期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Learning algorithm and application of quantum BP neural networks based on universal quantum gates 被引量:26
1
作者 Li Panchi Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期167-174,共8页
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is... A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation. 展开更多
关键词 quantum computing universal quantum gate quantum neuron quantum neural networks
在线阅读 下载PDF
Application of quantum neural networks in localization of acoustic emission 被引量:6
2
作者 Aidong Deng Li Zhao Wei Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期507-512,共6页
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca... Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more. 展开更多
关键词 acoustic emission(AE) LOCALIZATION quantum genetic algorithm(QGA) back propagation(BP) neural network.
在线阅读 下载PDF
Backflow Transformation for A=3 Nuclei with Artificial Neural Networks
3
作者 YANG Yilong ZHAO Pengwei 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期673-678,共6页
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif... A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy. 展开更多
关键词 nuclear many-body problem quantum Monte Carlo artificial neural network backflow transformation
在线阅读 下载PDF
大模型时代下的汉语自然语言处理研究与探索 被引量:4
4
作者 黄施洋 奚雪峰 崔志明 《计算机工程与应用》 北大核心 2025年第1期80-97,共18页
自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然... 自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然而,相较于英语大模型,汉语大模型在逻辑推理和文本理解能力方面仍存在不足。介绍了图神经网络在特定CNLP任务中的优势,进行了量子机器学习在CNLP发展潜力的调查。总结了大模型的基本原理和技术架构,详细整理了大模型评测任务的典型数据集和模型评价指标,评估比较了当前主流的大模型在CNLP任务中的效果。分析了当前CNLP存在的挑战,并对CNLP任务的未来研究方向进行了展望,希望能帮助解决当前CNLP存在的挑战,同时为新方法的提出提供了一定的参考。 展开更多
关键词 汉语自然语言处理 图神经网络 量子机器学习 汉语大模型
在线阅读 下载PDF
ECG-QGAN:基于量子生成对抗网络的心电图生成式信息系统
5
作者 瞿治国 陈韦龙 +2 位作者 孙乐 刘文杰 张彦春 《计算机研究与发展》 北大核心 2025年第7期1622-1638,共17页
据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,E... 据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,ECG)临床数据.作为一门新兴学科,量子计算可通过利用量子叠加和纠缠特性,能够探索更大、更复杂的状态空间,进而有利于生成同临床数据一样的高质量和多样化的ECG数据.为此,提出了一种基于量子生成对抗网络(QGAN)的ECG生成式信息系统,简称ECG-QGAN.其中QGAN由量子双向门控循环单元(quantum bidirectional gated recurrent unit,QBiGRU)和量子卷积神经网络(quantum convolutional neural network,QCNN)组成.该系统利用量子的纠缠特性提高生成能力,以生成与现有临床数据一致的ECG数据,从而可以保留心脏病患者的心跳特征.该系统的生成器和判别器分别采用QBiGRU和QCNN,并应用了基于矩阵乘积状态(matrix product state,MPS)和树形张量网络(tree tensor network,TTN)所设计的变分量子电路(variational quantum circuit,VQC),可以使该系统在较少的量子资源下更高效地捕捉ECG数据信息,生成合格的ECG数据.此外,该系统应用了量子Dropout技术,以避免训练过程中出现过拟合问题.最后,实验结果表明,与其他生成ECG数据的模型相比,ECG-QGAN生成的ECG数据具有更高的平均分类准确率.同时它在量子位数量和电路深度方面对当前噪声较大的中尺度量子(noise intermediate scale quantum,NISQ)计算机是友好的. 展开更多
关键词 生成式信息系统 心电图 量子生成对抗网络 量子双向门控循环单元 量子卷积神经网络
在线阅读 下载PDF
基于变分量子电路的量子机器学习算法综述
6
作者 于瑞祺 张鑫云 任爽 《计算机研究与发展》 北大核心 2025年第4期821-851,共31页
随着数据规模的增加,机器学习的重要性与影响力随之增大.借助量子力学的原理能够实现量子计算,结合量子计算和机器学习形成的量子机器学习算法对经典机器学习算法理论上能够产生指数级的加速优势.部分经典算法的量子版本已经被提出,有... 随着数据规模的增加,机器学习的重要性与影响力随之增大.借助量子力学的原理能够实现量子计算,结合量子计算和机器学习形成的量子机器学习算法对经典机器学习算法理论上能够产生指数级的加速优势.部分经典算法的量子版本已经被提出,有望解决使用经典计算机难以解决的问题.当前受量子计算硬件所限,可操控的量子比特数目和噪声等因素制约着量子计算机的发展.短期内量子计算硬件难以达到通用量子计算机需要的程度,当前研究重点是获得能够在中等规模含噪声量子(noisy intermediatescale quantum,NISQ)计算设备上运行的算法.变分量子算法是一种混合量子-经典算法,适合应用于当前量子计算设备,是量子机器学习领域的研究热点之一.变分量子电路是一种参数化量子电路,变分量子算法利用其完成量子机器学习任务.变分量子电路也被称为拟设或量子神经网络.变分量子算法框架主要由5个步骤组成:1)根据任务设计损失函数和量子电路结构;2)将经典数据预处理后编码到量子态上,量子数据可以省略编码;3)计算损失函数;4)测量和后处理;5)优化器优化参数.在此背景下,综述了量子计算基础理论与变分量子算法的基础框架,详细介绍了变分量子算法在量子机器学习领域的应用及进展,分别对量子有监督学习、量子无监督学习、量子半监督学习、量子强化学习以及量子电路结构搜索相关模型进行了介绍与对比,对相关数据集及相关模拟平台进行了简要介绍和汇总,最后提出了基于变分量子电路量子机器学习算法所面临的挑战及今后的研究趋势. 展开更多
关键词 量子计算 量子机器学习 变分量子算法 量子神经网络 量子深度学习 量子强化学习
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
7
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
一种基于混合量子卷积神经网络的恶意代码检测方法
8
作者 熊其冰 苗启广 +2 位作者 杨天 袁本政 费洋扬 《计算机科学》 北大核心 2025年第3期385-390,共6页
量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测... 量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测模型越来越复杂,参数量越来越大,迫切需要一种高效轻量型的检测模型。为此,设计了一种混合量子卷积神经网络模型,将量子计算融入经典卷积神经网络,以提高模型的计算效率。该模型包含量子卷积层、池化层和经典全连接层。量子卷积层采用低深度强纠缠轻量型的参数化量子线路实现,仅使用两类量子门:量子旋转门Ry和受控非门CNOT(controlled-NOT),并仅使用两量子比特实现卷积计算。池化层基于经典计算和量子计算实现了3种池化方法。在Google TensorFlow Quantum上进行了模拟实验。实验结果显示,所提模型在恶意代码公开数据集DataCon2020和Ember的分类性能(accuracy,F1-score)分别达到了(97.75%,97.71%)和(94.65%,94.78%),均有明显提升。 展开更多
关键词 量子计算 量子机器学习 混合量子卷积神经网络 恶意代码检测
在线阅读 下载PDF
多特征和APSO-QNN相结合的语音端点检测算法 被引量:4
9
作者 董胡 《探测与控制学报》 CSCD 北大核心 2017年第4期90-95,共6页
针对传统端点检测算法在多种复杂噪声环境下端点检测正确率低、鲁棒性较弱的问题,提出多特征和加速粒子群优化量子神经网络(APSO-QNN)相结合的端点检测算法。该算法通过提取语音信号的短时能量特征、循环平均幅度差函数特征、频带方差... 针对传统端点检测算法在多种复杂噪声环境下端点检测正确率低、鲁棒性较弱的问题,提出多特征和加速粒子群优化量子神经网络(APSO-QNN)相结合的端点检测算法。该算法通过提取语音信号的短时能量特征、循环平均幅度差函数特征、频带方差特征及美尔频率倒谱系数特征,将这些特征量输入量子神经网络(QNN)进行学习并利用加速粒子群算法对量子神经网络参数进行优化,构建语音端点检测模型,实现对信号的类型的判别。仿真实验结果表明,该方法不仅提升了语音端点检测的正确率,而且降低了虚检率与漏检率,具有较强的抗噪鲁棒性。 展开更多
关键词 端点检测 加速粒子群优化 量子神经网络 正确率 鲁棒性
在线阅读 下载PDF
基于量子卷积神经网络的ARX分组密码区分器
10
作者 秦广雪 李丽莎 《信息网络安全》 北大核心 2025年第3期467-477,共11页
随着量子计算机的发展,量子神经网络技术不断取得新突破。尽管当前量子计算环境受限,但探索量子神经网络的潜在应用对未来科学技术发展具有重要意义。量子卷积神经网络结合量子计算的优势和神经网络强大的特征提取能力,在二分类任务上... 随着量子计算机的发展,量子神经网络技术不断取得新突破。尽管当前量子计算环境受限,但探索量子神经网络的潜在应用对未来科学技术发展具有重要意义。量子卷积神经网络结合量子计算的优势和神经网络强大的特征提取能力,在二分类任务上表现优异。文章提出一种量子卷积神经区分器,数据特征之间不分块而是作为一个整体编码到量子电路,然后训练参数化量子卷积电路。以SPECK-32为例,使用8个量子比特运行5轮的准确率为76.8%,超越了同等资源条件下的经典区分器,并成功运行到第6轮。文章对比了卷积电路和硬件高效Ansatz作为训练电路的量子神经区分器,结果表明前者具有更高的效率。此外,文章所提区分器成功运行了减轮的Speckey、LAX32、SIMON-32和SIMECK-32算法。最后,分析了影响量子卷积神经区分器性能的因素。 展开更多
关键词 量子卷积神经网络 量子计算 分组密码 区分器
在线阅读 下载PDF
轻量化量子激光通信跟踪系统
11
作者 于帅北 曹艳波 +2 位作者 徐彩前 王芳 孙景旭 《光通信技术》 北大核心 2025年第4期72-76,共5页
为了提升自由空间卫星量子激光通信地面终端的跟踪精度并实现轻量化设计,设计了一种基于双探测器复合轴跟踪技术的轻量化量子激光通信跟踪系统。该系统采用T型铝合金跟踪架和碳化硅主镜结构,结合粗-精跟踪分级控制策略,通过压电陶瓷快... 为了提升自由空间卫星量子激光通信地面终端的跟踪精度并实现轻量化设计,设计了一种基于双探测器复合轴跟踪技术的轻量化量子激光通信跟踪系统。该系统采用T型铝合金跟踪架和碳化硅主镜结构,结合粗-精跟踪分级控制策略,通过压电陶瓷快反镜补偿残余误差,并引入智能调参比例积分微分(PID)控制算法优化参数。实验结果表明:系统在星地外场测试中,粗跟踪精度标准差为4 arcsec(方位轴)和6.3 arcsec(俯仰轴),精跟踪闭环后综合误差标准差降至1.4 arcsec(方位轴)和1.2 arcsec(俯仰轴),同时系统重量较传统设计减轻50%。 展开更多
关键词 量子激光通信 复合轴控制 自动调参 比例积分微分控制 主元分析神经网络
在线阅读 下载PDF
基于多源信息融合告警的微电网故障定位方法研究
12
作者 杨志淳 李牧远 +3 位作者 韩佶 杨帆 沈煜 闵怀东 《电测与仪表》 北大核心 2025年第6期45-55,共11页
针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算... 针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算对数据进行处理并进行可视化,通过卷积神经网络对故障信息进行辨识,实现告警信息智能生成。采用开关函数法对多源告警信息进行加权融合,并采用改进二进制量子粒子群算法对故障模型进行求解。最后,在改进IEEE 33系统中进行了算例分析,结果表明,所提方法能够准确生成故障告警信息并快速定位故障,且在多点信息畸变下仍具有较高的定位精度效果。 展开更多
关键词 故障定位 微电网故障告警 多源信息融合 二进制量子粒子群 卷积神经网络
在线阅读 下载PDF
基于BP神经网络的测量设备无关协议参数预测 被引量:1
13
作者 周江平 周媛媛 +1 位作者 周学军 李洁琼 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期611-616,共6页
针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,... 针对传统参数优化方法计算开销大,不能满足实时性要求高、计算量大等应用场景的问题,结合当今主流的机器学习方法,提出了一种改进的基于BP神经网络的参数优化方法,利用本地搜索算法的数据训练网络并对参数进行预测,替代传统的查找算法,从而获得更好的实时性和更低的计算复杂度,随后与基于随机森林和XGBoost的方法进行了比较。仿真结果表明,BP神经网络预测所得各参数的均方误差数量级为10^(-6)或更小,由该参数计算所得密钥生成率与最优密钥生成率比值的均值为0.998 8,且该应用中BP神经网络相对随机森林和XGBoost具有更好的预测性能。 展开更多
关键词 量子光学 量子密钥分发 BP神经网络 参数优化 测量设备无关
在线阅读 下载PDF
最简结构神经网络的量子态估计及其性能对比
14
作者 丛爽 李友志 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第12期2401-2407,共7页
本文提出并设计两种具有最简结构的前向神经网络,来高精度实现对量子态密度矩阵的估计.训练出具有函数逼近功能的反向传播(BP)神经网络和径向基函数(RBF)网络进行量子密度矩阵估计的应用.根据量子态密度矩阵与量子系统实验装置的输出测... 本文提出并设计两种具有最简结构的前向神经网络,来高精度实现对量子态密度矩阵的估计.训练出具有函数逼近功能的反向传播(BP)神经网络和径向基函数(RBF)网络进行量子密度矩阵估计的应用.根据量子态密度矩阵与量子系统实验装置的输出测量值之间的关系,建立并构造出训练神经网络的输入/输出样本对;通过对网络的归一化处理,获得满足量子密度矩阵条件的网络输出.分别对2量子位的本征态、叠加态和混合态的估计设计和训练出不同网络,并在给定的性能指标下,与采用深度学习算法的具有两个隐含层的宽度网络(WNN)的量子密度矩阵估计性能进行对比分析.在此基础上,采用RBF神经网络对高量子位密度矩阵进行估计实验.分别在最少隐含层节点数、最少训练样本数、最短训练时间,以及对非样本输入数据的泛化能力方面,通过仿真实验对所设计网络的量子密度矩阵估计的优越性能进行对比研究. 展开更多
关键词 神经网络 量子态估计 结构优化
在线阅读 下载PDF
42CrMo钢精密切削的刀具磨损量预测研究 被引量:1
15
作者 成钢 唐昆 +4 位作者 刘庞中 刘子聪 袁剑平 胡永乐 毛聪 《工具技术》 北大核心 2024年第3期138-143,共6页
针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积... 针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积核等进行优化,结合CNN网络特征提取能力强、LSTM网络具备记忆能力的特点,对实际加工实验的刀具磨损量进行预测,并通过误差评价指标分析,与CNN、LSTM、BP等单一模型以及PSO-GRNN组合模型进行预测效果对比研究。研究结果表明,本文构建的组合预测模型相对于单一预测模型,其预测值与真实值吻合程度更高;相对于PSO-GRNN组合模型,三种误差评价指标的误差值至少降低了27%,其泛化性和稳定性较好,预测精度与非线性拟合能力更强。 展开更多
关键词 刀具磨损量 组合预测模型 量子粒子群算法优化 卷积神经网络 长短期神经网络
在线阅读 下载PDF
量子模糊信息管理数学模型研究 被引量:1
16
作者 张仕斌 黄晨猗 +4 位作者 李晓瑜 郑方聪 李闯 刘兆林 杨咏熹 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期284-290,共7页
为了高效处理大数据所具有的复杂性和不确定问题,将“不确定性问题+直觉模糊集理论+量子计算”交叉融合,构建基于直觉模糊集理论的量子模糊信息管理数学模型。为了验证该模型的可行性、合理性和有效性,设计了不确定性环境下基于参数化... 为了高效处理大数据所具有的复杂性和不确定问题,将“不确定性问题+直觉模糊集理论+量子计算”交叉融合,构建基于直觉模糊集理论的量子模糊信息管理数学模型。为了验证该模型的可行性、合理性和有效性,设计了不确定性环境下基于参数化量子线路的量子模糊神经网络仿真实验。实验结果表明,基于该模型的量子模糊神经网络模型能更客观、准确、全面地反映不确定性问题中各对象所蕴含的知识信息,从而提高算法处理大数据的准确性。 展开更多
关键词 大数据 量子计算 直觉模糊集理论 量子模型信息管理 量子模糊神经网络
在线阅读 下载PDF
基于混沌云量子蝙蝠CNN-GRU大坝变形智能预报方法研究 被引量:5
17
作者 陈以浩 李明伟 +2 位作者 安小刚 王宇田 徐瑞喆 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期110-118,共9页
针对大坝变形影响因素复杂、精准预报难度较大问题,为了提高在大坝安全管理过程中大坝变形的预报精度,本文从大坝变形非线性动力系统时间序列的强非线性出发,引入深度卷积神经网络,对大坝变形及其空间影响特性进行挖掘,引入门控循环单元... 针对大坝变形影响因素复杂、精准预报难度较大问题,为了提高在大坝安全管理过程中大坝变形的预报精度,本文从大坝变形非线性动力系统时间序列的强非线性出发,引入深度卷积神经网络,对大坝变形及其空间影响特性进行挖掘,引入门控循环单元,对大坝变形的时域特性进行挖掘,构建应用于大坝变形预报的深度卷积神经网络-门控循环单元大坝变形组合深度学习网络;同时,为了获取深度卷积神经网络-门控循环单元组合网络的最佳超参,引入了混沌云量子蝙蝠算法,建立了基于混沌云量子蝙蝠算法算法的深度卷积神经网络-门控循环单元组合网络超参优选方法;最后,提出了深度卷积神经网络-门控循环单元-混沌云量子蝙蝠算法大坝变形组合深度学习智能预报方法。基于实测数据开展预报研究,对比结果表明:与对比模型相比,提出的深度卷积神经网络-门控循环单元-混沌云量子蝙蝠算法预报方法取得了更精确的预报结果,混沌云量子蝙蝠算法算法用于超参优选获得了更佳的超参组合。 展开更多
关键词 大坝变形预测 卷积神经网络 门控循环单元 蝙蝠算法 量子力学 混沌理论 非线性动力系统模拟与预测 深度学习
在线阅读 下载PDF
基于卷积神经网络的高效量子态层析方法 被引量:1
18
作者 孙乾 蒋楠 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期325-330,共6页
通过系统梳理多种量子态层析技术的重构算法,并结合MATLAB数值模拟,比较并分析了线性重构与回归估计、极大似然估计,以及基于深度神经网络量子态层析方法的重构效果.结果表明:基于卷积神经网络重构算法在1~3量子比特时,能够用较短时间... 通过系统梳理多种量子态层析技术的重构算法,并结合MATLAB数值模拟,比较并分析了线性重构与回归估计、极大似然估计,以及基于深度神经网络量子态层析方法的重构效果.结果表明:基于卷积神经网络重构算法在1~3量子比特时,能够用较短时间均实现>99.5%的保真度;相较于其他经典重构算法,基于卷积神经网络重构算法在算法复杂度及保真度上具有显著优势;又因其对复杂模型具有较好的拟合能力,且辅助解决了估计密度矩阵中出现负本征值的问题,使得重构所得估计密度矩阵全部具有物理意义. 展开更多
关键词 量子态层析 密度矩阵 卷积神经网络 保真度 负本征值
在线阅读 下载PDF
基于BP神经网络模型的呼出气δ^(13)C、δ^(18)O同位素丰度测量方法研究 被引量:1
19
作者 黄文彪 夏滑 +4 位作者 王前进 孙鹏帅 庞涛 吴边 张志荣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2761-2767,共7页
碳13(^(13)C)尿素呼气试验在国内外作为检测幽门螺旋杆菌的“金标准”已被广泛采用,精准测量CO_(2)中碳(C)和氧(O)同位素特征对疾病诊断具有重大意义。可调谐半导体激光吸收光谱技术(TDLAS)具有结构简单、响应速度快、灵敏度高等众多优... 碳13(^(13)C)尿素呼气试验在国内外作为检测幽门螺旋杆菌的“金标准”已被广泛采用,精准测量CO_(2)中碳(C)和氧(O)同位素特征对疾病诊断具有重大意义。可调谐半导体激光吸收光谱技术(TDLAS)具有结构简单、响应速度快、灵敏度高等众多优点,在多个领域得到广泛应用,同时完全适用于气体同位素的测量研究。该研究面向人体呼出气体中的CO_(2)气体检测需求,基于直接吸收光谱技术,采用中心波长为4.32μm的量子级联激光器(QCL)结合光程为14 cm/44 mL的小容积气体吸收腔体,完成了同时测量^(16)O^(12)C^(16)O、^(18)O^(12)C^(16)O和^(16)O^(13)C^(16)O的多组分同位素气体浓度的实验系统。基于反向传播(BP)神经网络模型,降低直接吸收光谱系统中光源稳定性和测量样品气体波动带来的噪声干扰。结果表明:基于BP神经网络模型的同位素丰度测量精度与稳定性均优于吸光度峰值比法,^(16)O^(13)C^(16)O与^(18)O^(12)C^(16)O的浓度测量精度分别提高约1.27与1.58倍。Allan方差分析表明,当积分时间为106 s时,采用BP神经网络模型的^(13)C与^(18)O同位素丰度测量精度分别为0.97‰和1.47‰,相比吸光度峰值比法测量精度提高了约2.1倍与1.2倍。充分证明了基于BP神经网络模型的同位素丰度测量方法的可行性,为研制高精度同位素丰度传感器奠定基础。 展开更多
关键词 可调谐半导体激光吸收光谱技术(TDLAS) 量子级联激光器(QCL) 反向传播(BP)神经网络模型 同位素丰度
在线阅读 下载PDF
基于集成量子神经网络的大地构造环境判别与分析
20
作者 张佳文 李明超 +1 位作者 韩帅 张敬宜 《地学前缘》 EI CAS CSCD 北大核心 2024年第3期511-519,共9页
量子地球科学是一门崭新的跨学科前缘专业,量子计算和量子机器学习算法为地学大数据的深度挖掘与分析带来了新的契机。其中,量子神经网络是目前最具代表性的研究方向之一,在复杂多源数据处理方面的效率与准确率尤为突出。本文以大地构... 量子地球科学是一门崭新的跨学科前缘专业,量子计算和量子机器学习算法为地学大数据的深度挖掘与分析带来了新的契机。其中,量子神经网络是目前最具代表性的研究方向之一,在复杂多源数据处理方面的效率与准确率尤为突出。本文以大地构造环境判别这一关键问题为切入点,利用堆叠集成算法对量子神经网络(Stacking Quantum Neural Network,S-QNN)进行了改进,并分别实现了玄武岩、辉长岩和尖晶石的构造环境智能判别;同时与四种传统算法(SVM、RF、KNN和NB)、经典神经网络(ANN)和传统量子神经网络(QNN)进行对比。结果表明,集成后的S-QNN模型在3类情况下的准确率较最优的传统算法分别提升5.67%、6.19%和13.34%,较普通的QNN模型提升3.11%、4.99%和3.84%,且更具鲁棒性和通用性。该研究反映了所提出的S-QNN在数据处理中的优势,更证实了量子机器学习算法在地球科学研究中的适用性与潜力,为量子科学与地球科学的交叉融合提供了新思路。 展开更多
关键词 量子地球科学 构造环境判别 岩石矿物 地球化学 堆叠集成算法 量子神经网络
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部