Aimed at the characteristics of permafrost temperature influencing the safety of Qinghai-Tibet Railway and its on-line testing system, comparing the achievement of permafrost study nationwide with those worldwide, an ...Aimed at the characteristics of permafrost temperature influencing the safety of Qinghai-Tibet Railway and its on-line testing system, comparing the achievement of permafrost study nationwide with those worldwide, an automatic testing system of permafrost temperature, containing a master computer and some slave computers, was designed. By choosing high-precise thermistors as temperature sensor, designing and positioning the depth and interval of testing sections, testing, keeping and sending permafrost temperature data at time over slave computers, and receiving, processing and analyzing the data of collecting permafrost temperature over master computer, the change of the permafrost temperature can be described and analyzed, which can provide information for permafrost railway engineering design. Moreover, by taking permafrost temperature testing in a certain section of Qinghai-Tibet Railway as an instance, the collected data of permafrost temperature were analyzed, and the effect of permafrost behavior was depicted under the railway, as well as, a BP model was set up to predict the permafrost characteristics. This testing system will provide information timely about the change of the permafrost to support the safety operation in Qinghai-Tibet Railway.展开更多
It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong w...It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong winds, cold and high radiation conditions on the Qinghai-Tibet Plateau(QTP), both wind-blown sand and/or weathered rock debris blockage might reduce the porosity of the rock layers, resulting in weakening the cooling effect of the crushed rock layer(CRL) in the crushed rock embankment(CRE) of the Qinghai-Tibet Railway(QTR) in the permafrost regions. Such a process might warm the underlying permafrost, and further lead to potential threat to the QTR's integrity and stability. The different porosities corresponding to the different equivalent rock diameters were measured in the laboratory using water saturation method, and an empirical exponential equation between porosity and equivalent rock diameter was proposed based on the measured experimental data and an important finding is observed in our and other experiments that the larger size crushed rock tends to lead to the larger porosity when arbitrarily packing. Numerical tests were carried out to study impacts of porosity on permafrost degradation and differential thaw depths between the sunny and shady shoulders. The results show that the decrease in porosity due to wind-blown sand or weathered rock debris clogging can worsen the permafrost degradation and lead to the asymmetric thermal regime. In the traditional embankment(without the CRL within it), the largest differential thaw depth can reach up to 3.1 m. The optimized porosity appears in a range from 34% to 42% corresponding to equivalent rock diameter from 10 to 20.5 cm. The CRE with the optimized porosities can make underlying permafrost stable and 0 ℃ isotherms symmetric in the coming 50 years, even under the condition that the climate warming can lead to permafrost degradation under the CRE and the traditional embankment. Some practical implications were proposed to benefit the future design, construction and maintenance of CRE in permafrost regions.展开更多
基金Project(2007XM036) supported by the Science and Technology of Beijing Jiaotong University, China
文摘Aimed at the characteristics of permafrost temperature influencing the safety of Qinghai-Tibet Railway and its on-line testing system, comparing the achievement of permafrost study nationwide with those worldwide, an automatic testing system of permafrost temperature, containing a master computer and some slave computers, was designed. By choosing high-precise thermistors as temperature sensor, designing and positioning the depth and interval of testing sections, testing, keeping and sending permafrost temperature data at time over slave computers, and receiving, processing and analyzing the data of collecting permafrost temperature over master computer, the change of the permafrost temperature can be described and analyzed, which can provide information for permafrost railway engineering design. Moreover, by taking permafrost temperature testing in a certain section of Qinghai-Tibet Railway as an instance, the collected data of permafrost temperature were analyzed, and the effect of permafrost behavior was depicted under the railway, as well as, a BP model was set up to predict the permafrost characteristics. This testing system will provide information timely about the change of the permafrost to support the safety operation in Qinghai-Tibet Railway.
基金Project(2012CB026101)supported by the National Key Basic Research Program of China(973 Program)Project(41121061)supported by the Program for Innovative Research Group of Natural Science Foundation of China+2 种基金Project(143GKDA007)supported by the Science and Technology Major Project of the Gansu ProvinceProject(SKLFSE-ZY-16)supported by the State Key Laboratory of Frozen Soil Engineering,ChinaProject supported by the West Light Foundation of CAS for G.Y.Li
文摘It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong winds, cold and high radiation conditions on the Qinghai-Tibet Plateau(QTP), both wind-blown sand and/or weathered rock debris blockage might reduce the porosity of the rock layers, resulting in weakening the cooling effect of the crushed rock layer(CRL) in the crushed rock embankment(CRE) of the Qinghai-Tibet Railway(QTR) in the permafrost regions. Such a process might warm the underlying permafrost, and further lead to potential threat to the QTR's integrity and stability. The different porosities corresponding to the different equivalent rock diameters were measured in the laboratory using water saturation method, and an empirical exponential equation between porosity and equivalent rock diameter was proposed based on the measured experimental data and an important finding is observed in our and other experiments that the larger size crushed rock tends to lead to the larger porosity when arbitrarily packing. Numerical tests were carried out to study impacts of porosity on permafrost degradation and differential thaw depths between the sunny and shady shoulders. The results show that the decrease in porosity due to wind-blown sand or weathered rock debris clogging can worsen the permafrost degradation and lead to the asymmetric thermal regime. In the traditional embankment(without the CRL within it), the largest differential thaw depth can reach up to 3.1 m. The optimized porosity appears in a range from 34% to 42% corresponding to equivalent rock diameter from 10 to 20.5 cm. The CRE with the optimized porosities can make underlying permafrost stable and 0 ℃ isotherms symmetric in the coming 50 years, even under the condition that the climate warming can lead to permafrost degradation under the CRE and the traditional embankment. Some practical implications were proposed to benefit the future design, construction and maintenance of CRE in permafrost regions.