DEA is a nonparametric method used in operation researches and economics fields for the evaluation of the production frontier. It has distinct intrinsic which is worth coping with assessment problems with multiple inp...DEA is a nonparametric method used in operation researches and economics fields for the evaluation of the production frontier. It has distinct intrinsic which is worth coping with assessment problems with multiple inputs in particular with multiple outputs. This paper used D~ C2 R model of DEA to assess the comparative efficiency of the multiple schemes of agricultural industrial structure, at the end we chose the most favorable also known as "OPTIMAL" scheme. In addition to this, using some functional insights from DEA model non optimal schemes or less optimal schemes had also been improved to some extent. Assessment and selection of optimal schemes of agricultural industrial structure using DEA model gave a greater and better insight of agricultural industrial structure and was the first of such researches in Pakistan.展开更多
This paper used the modern evaluation method of DEA (Data Envelopment Analysis) to assess the comparative efficiency and then on the basis of this among multiple schemes chose the optimal scheme of agricultural prod...This paper used the modern evaluation method of DEA (Data Envelopment Analysis) to assess the comparative efficiency and then on the basis of this among multiple schemes chose the optimal scheme of agricultural production structure adjustment. Based on the results of DEA model, we dissected scale advantages of each discretionary scheme or plan. We examined scale advantages of each discretionary scheme, tested profoundly a definitive purpose behind not-DEA efficient, which elucidated the system and methodology to enhance these discretionary plans. At the end, another method had been proposed to rank and select the optimal scheme. The research was important to guide the practice if the modification of agricultural production industrial structure was carded on.展开更多
The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration product...The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.展开更多
文摘DEA is a nonparametric method used in operation researches and economics fields for the evaluation of the production frontier. It has distinct intrinsic which is worth coping with assessment problems with multiple inputs in particular with multiple outputs. This paper used D~ C2 R model of DEA to assess the comparative efficiency of the multiple schemes of agricultural industrial structure, at the end we chose the most favorable also known as "OPTIMAL" scheme. In addition to this, using some functional insights from DEA model non optimal schemes or less optimal schemes had also been improved to some extent. Assessment and selection of optimal schemes of agricultural industrial structure using DEA model gave a greater and better insight of agricultural industrial structure and was the first of such researches in Pakistan.
文摘This paper used the modern evaluation method of DEA (Data Envelopment Analysis) to assess the comparative efficiency and then on the basis of this among multiple schemes chose the optimal scheme of agricultural production structure adjustment. Based on the results of DEA model, we dissected scale advantages of each discretionary scheme or plan. We examined scale advantages of each discretionary scheme, tested profoundly a definitive purpose behind not-DEA efficient, which elucidated the system and methodology to enhance these discretionary plans. At the end, another method had been proposed to rank and select the optimal scheme. The research was important to guide the practice if the modification of agricultural production industrial structure was carded on.
基金Project(51208391) supported by the National Natural Science Foundation of China
文摘The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak.