In this article, the Rosenbloom-Tsfasman metric of matrix product codes over finite commutative rings is studied and the lower bounds for the minimal Rosenbloom- Tsfasman distances of the matrix product codes axe obta...In this article, the Rosenbloom-Tsfasman metric of matrix product codes over finite commutative rings is studied and the lower bounds for the minimal Rosenbloom- Tsfasman distances of the matrix product codes axe obtained. The lower bounds of the dual codes of matrix product codes over finite commutative Frobenius rings are also given.展开更多
We study the structure of the continuous matrix product operator(cMPO)^([1]) for the transverse field Ising model(TFIM).We prove TFIM’s cMPO is solvable and has the form T=e^(-1/2H_(F)).H_(F) is a non-local free ferm...We study the structure of the continuous matrix product operator(cMPO)^([1]) for the transverse field Ising model(TFIM).We prove TFIM’s cMPO is solvable and has the form T=e^(-1/2H_(F)).H_(F) is a non-local free fermionic Hamiltonian on a ring with circumferenceβ,whose ground state is gapped and non-degenerate even at the critical point.The full spectrum of H_(F) is determined analytically.At the critical point,our results verify the state–operator-correspondence^([2]) in the conformal field theory(CFT).We also design a numerical algorithm based on Bloch state ansatz to calculate the lowlying excited states of general(Hermitian)cMPO.Our numerical calculations coincide with the analytic results of TFIM.In the end,we give a short discussion about the entanglement entropy of cMPO’s ground state.展开更多
Hou,de la Torre和Nandakumar(2014)提出可以使用Wald统计量检验DIF,但其结果的一类错误率存在过度膨胀的问题。本研究中提出了一个使用观察信息矩阵进行计算的改进后的Wald统计量。结果表明:(1)使用观察信息矩阵计算的这一改进后的Wal...Hou,de la Torre和Nandakumar(2014)提出可以使用Wald统计量检验DIF,但其结果的一类错误率存在过度膨胀的问题。本研究中提出了一个使用观察信息矩阵进行计算的改进后的Wald统计量。结果表明:(1)使用观察信息矩阵计算的这一改进后的Wald统计量在DIF检验中具有良好的一类错误控制率,尤其是在项目具有较高区分能力的时候,解决了以往研究中一类错误率过度膨胀的问题。(2)随着样本量的增加以及DIF量的增大,使用观察信息矩阵计算Wald统计量的统计检验力也在增加。展开更多
文摘In this article, the Rosenbloom-Tsfasman metric of matrix product codes over finite commutative rings is studied and the lower bounds for the minimal Rosenbloom- Tsfasman distances of the matrix product codes axe obtained. The lower bounds of the dual codes of matrix product codes over finite commutative Frobenius rings are also given.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the National Natural Science Foundation of China(Grant Nos.11774398 and T2121001)。
文摘We study the structure of the continuous matrix product operator(cMPO)^([1]) for the transverse field Ising model(TFIM).We prove TFIM’s cMPO is solvable and has the form T=e^(-1/2H_(F)).H_(F) is a non-local free fermionic Hamiltonian on a ring with circumferenceβ,whose ground state is gapped and non-degenerate even at the critical point.The full spectrum of H_(F) is determined analytically.At the critical point,our results verify the state–operator-correspondence^([2]) in the conformal field theory(CFT).We also design a numerical algorithm based on Bloch state ansatz to calculate the lowlying excited states of general(Hermitian)cMPO.Our numerical calculations coincide with the analytic results of TFIM.In the end,we give a short discussion about the entanglement entropy of cMPO’s ground state.
文摘Hou,de la Torre和Nandakumar(2014)提出可以使用Wald统计量检验DIF,但其结果的一类错误率存在过度膨胀的问题。本研究中提出了一个使用观察信息矩阵进行计算的改进后的Wald统计量。结果表明:(1)使用观察信息矩阵计算的这一改进后的Wald统计量在DIF检验中具有良好的一类错误控制率,尤其是在项目具有较高区分能力的时候,解决了以往研究中一类错误率过度膨胀的问题。(2)随着样本量的增加以及DIF量的增大,使用观察信息矩阵计算Wald统计量的统计检验力也在增加。