The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer s...The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.展开更多
中文命名实体识别(NER)任务旨在抽取非结构化文本中包含的实体并给它们分配预定义的实体类别。针对大多数中文NER方法在上下文信息缺乏时的语义学习不足问题,提出一种层次融合多元知识的NER框架——HTLR(Chinese NER method based on Hi...中文命名实体识别(NER)任务旨在抽取非结构化文本中包含的实体并给它们分配预定义的实体类别。针对大多数中文NER方法在上下文信息缺乏时的语义学习不足问题,提出一种层次融合多元知识的NER框架——HTLR(Chinese NER method based on Hierarchical Transformer fusing Lexicon and Radical),以通过分层次融合的多元知识来帮助模型学习更丰富、全面的上下文信息和语义信息。首先,通过发布的中文词汇表和词汇向量表识别语料中包含的潜在词汇并把它们向量化,同时通过优化后的位置编码建模词汇和相关字符的语义关系,以学习中文的词汇知识;其次,通过汉典网发布的基于汉字字形的编码将语料转换为相应的编码序列以代表字形信息,并提出RFECNN(Radical Feature Extraction-Convolutional Neural Network)模型来提取字形知识;最后,提出Hierarchical Transformer模型,其中由低层模块分别学习字符和词汇以及字符和字形的语义关系,并由高层模块进一步融合字符、词汇、字形等多元知识,从而帮助模型学习语义更丰富的字符表征。在Weibo、Resume、MSRA和OntoNotes4.0公开数据集进行了实验,与主流方法NFLAT(Non-Flat-LAttice Transformer for Chinese named entity recognition)的对比结果表明,所提方法的F1值在4个数据集上分别提升了9.43、0.75、1.76和6.45个百分点,达到最优水平。可见,多元语义知识、层次化融合、RFE-CNN结构和Hierarchical Transformer结构对学习丰富的语义知识及提高模型性能是有效的。展开更多
自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然...自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然而,相较于英语大模型,汉语大模型在逻辑推理和文本理解能力方面仍存在不足。介绍了图神经网络在特定CNLP任务中的优势,进行了量子机器学习在CNLP发展潜力的调查。总结了大模型的基本原理和技术架构,详细整理了大模型评测任务的典型数据集和模型评价指标,评估比较了当前主流的大模型在CNLP任务中的效果。分析了当前CNLP存在的挑战,并对CNLP任务的未来研究方向进行了展望,希望能帮助解决当前CNLP存在的挑战,同时为新方法的提出提供了一定的参考。展开更多
钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井...钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。展开更多
针对紧急插单事件的动态作业车间调度问题,以最小化所有工件的提前与延迟完工时间为目标,创建了动态作业车间环境模型。将调度问题转换为马尔可夫过程,并采用结合图神经网络的DDQN(double deep Q-network,DDQN)深度强化学习算法进行求...针对紧急插单事件的动态作业车间调度问题,以最小化所有工件的提前与延迟完工时间为目标,创建了动态作业车间环境模型。将调度问题转换为马尔可夫过程,并采用结合图神经网络的DDQN(double deep Q-network,DDQN)深度强化学习算法进行求解。通过图神经网络对车间状态析取图做特征提取从而避免状态定义依赖人工经验设计的问题,引入了注意力机制能够增强强化学习智能体对状态信息的获取能力,并将六组规则调度作为智能体的决策空间,定义了全新的奖励方法,加强其对智能体学习的指导能力。通过多组对照实验说明了所构建的求解模型的有效性和可行性。展开更多
船舶在运行过程中,易因设备老化、操作失误或其他突发事件影响造成电力系统通信系统损伤,导致电力系统关键数据缺失,影响系统的正常运行和安全态势的准确感知。针对现有电力系统缺失数据恢复算法速度较慢且还原精度较低的问题,提出一种...船舶在运行过程中,易因设备老化、操作失误或其他突发事件影响造成电力系统通信系统损伤,导致电力系统关键数据缺失,影响系统的正常运行和安全态势的准确感知。针对现有电力系统缺失数据恢复算法速度较慢且还原精度较低的问题,提出一种基于少量量测信息的超分辨率量测生成方法。根据电力系统量测配置分布空间分布不均且量测精度不同的特点构建电力系统空间稀疏量测状态方程,结合图傅里叶分解技术构建电压的低维近似等式来减少参数量,进而实现低阶线性的近似利用,通过引入掩码概念,构造基于图信号处理的状态估计优化方程,实现了配电网电压的快速重建并提高了全局电压的质量。通过IEEE-85节点算例验证,所提方法相较半正定规划最小二乘法(Semi-Definite Programming Least Squares,SDP-SE)、矩阵补全方法在不同量测数量下的电压恢复精度平均提升50%,相较SDP-SE在运算时间上从分钟级降低至秒级,支持系统在线运行。在Cloudpss中搭建船舶电力系统模型并进行实验,在2 s内实现了缺失电压的数据恢复,且电压的平均绝对误差为0.88%,验证了该方法在船舶电力系统通信系统部分损毁的情况下,能够准确掌握全局信息,提高系统的抗干扰能力和自愈能力。展开更多
文摘The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.
文摘中文命名实体识别(NER)任务旨在抽取非结构化文本中包含的实体并给它们分配预定义的实体类别。针对大多数中文NER方法在上下文信息缺乏时的语义学习不足问题,提出一种层次融合多元知识的NER框架——HTLR(Chinese NER method based on Hierarchical Transformer fusing Lexicon and Radical),以通过分层次融合的多元知识来帮助模型学习更丰富、全面的上下文信息和语义信息。首先,通过发布的中文词汇表和词汇向量表识别语料中包含的潜在词汇并把它们向量化,同时通过优化后的位置编码建模词汇和相关字符的语义关系,以学习中文的词汇知识;其次,通过汉典网发布的基于汉字字形的编码将语料转换为相应的编码序列以代表字形信息,并提出RFECNN(Radical Feature Extraction-Convolutional Neural Network)模型来提取字形知识;最后,提出Hierarchical Transformer模型,其中由低层模块分别学习字符和词汇以及字符和字形的语义关系,并由高层模块进一步融合字符、词汇、字形等多元知识,从而帮助模型学习语义更丰富的字符表征。在Weibo、Resume、MSRA和OntoNotes4.0公开数据集进行了实验,与主流方法NFLAT(Non-Flat-LAttice Transformer for Chinese named entity recognition)的对比结果表明,所提方法的F1值在4个数据集上分别提升了9.43、0.75、1.76和6.45个百分点,达到最优水平。可见,多元语义知识、层次化融合、RFE-CNN结构和Hierarchical Transformer结构对学习丰富的语义知识及提高模型性能是有效的。
文摘自然语言处理是实现人机交互的关键步骤,而汉语自然语言处理(Chinese natural language processing,CNLP)是其中的重要组成部分。随着大模型技术的发展,CNLP进入了一个新的阶段,这些汉语大模型具备更强的泛化能力和更快的任务适应性。然而,相较于英语大模型,汉语大模型在逻辑推理和文本理解能力方面仍存在不足。介绍了图神经网络在特定CNLP任务中的优势,进行了量子机器学习在CNLP发展潜力的调查。总结了大模型的基本原理和技术架构,详细整理了大模型评测任务的典型数据集和模型评价指标,评估比较了当前主流的大模型在CNLP任务中的效果。分析了当前CNLP存在的挑战,并对CNLP任务的未来研究方向进行了展望,希望能帮助解决当前CNLP存在的挑战,同时为新方法的提出提供了一定的参考。
文摘钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。
文摘针对紧急插单事件的动态作业车间调度问题,以最小化所有工件的提前与延迟完工时间为目标,创建了动态作业车间环境模型。将调度问题转换为马尔可夫过程,并采用结合图神经网络的DDQN(double deep Q-network,DDQN)深度强化学习算法进行求解。通过图神经网络对车间状态析取图做特征提取从而避免状态定义依赖人工经验设计的问题,引入了注意力机制能够增强强化学习智能体对状态信息的获取能力,并将六组规则调度作为智能体的决策空间,定义了全新的奖励方法,加强其对智能体学习的指导能力。通过多组对照实验说明了所构建的求解模型的有效性和可行性。
文摘船舶在运行过程中,易因设备老化、操作失误或其他突发事件影响造成电力系统通信系统损伤,导致电力系统关键数据缺失,影响系统的正常运行和安全态势的准确感知。针对现有电力系统缺失数据恢复算法速度较慢且还原精度较低的问题,提出一种基于少量量测信息的超分辨率量测生成方法。根据电力系统量测配置分布空间分布不均且量测精度不同的特点构建电力系统空间稀疏量测状态方程,结合图傅里叶分解技术构建电压的低维近似等式来减少参数量,进而实现低阶线性的近似利用,通过引入掩码概念,构造基于图信号处理的状态估计优化方程,实现了配电网电压的快速重建并提高了全局电压的质量。通过IEEE-85节点算例验证,所提方法相较半正定规划最小二乘法(Semi-Definite Programming Least Squares,SDP-SE)、矩阵补全方法在不同量测数量下的电压恢复精度平均提升50%,相较SDP-SE在运算时间上从分钟级降低至秒级,支持系统在线运行。在Cloudpss中搭建船舶电力系统模型并进行实验,在2 s内实现了缺失电压的数据恢复,且电压的平均绝对误差为0.88%,验证了该方法在船舶电力系统通信系统部分损毁的情况下,能够准确掌握全局信息,提高系统的抗干扰能力和自愈能力。