期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
特征匹配的SMC-PHD雷达非线性多目标跟踪算法
1
作者 陶进 蒋德富 +3 位作者 杨佳林 蒋康辉 付明星 刘铭 《现代雷达》 CSCD 北大核心 2024年第12期60-66,共7页
传统的雷达多目标跟踪采用数据关联方法,当杂波和目标数目较多时,这类方法计算量成指数增长,会出现组合爆炸。而基于随机有限集的序贯蒙特卡洛概率假设密度(SMC-PHD)滤波方法无需显式数据关联,为雷达非线性多目标跟踪提供了一种有效解... 传统的雷达多目标跟踪采用数据关联方法,当杂波和目标数目较多时,这类方法计算量成指数增长,会出现组合爆炸。而基于随机有限集的序贯蒙特卡洛概率假设密度(SMC-PHD)滤波方法无需显式数据关联,为雷达非线性多目标跟踪提供了一种有效解决方案。但在密集杂波和检测概率较低的环境中,传统的SMC-PHD滤波器跟踪性能和实时性能大幅下降。因此,本文提出一种特征匹配的SMC-PHD雷达非线性多目标跟踪算法,使用雷达回波中包含的特征信息对传统SMC-PHD滤波方法进行改进。这些特征信息可以滤除大量杂波,并区分同一新生位置的不同目标,从而提高跟踪精度和实时性。仿真结果表明,该方法能够在密集杂波且检测概率较低的环境下改善雷达多目标跟踪的准确性和实时性。 展开更多
关键词 特征匹配 多目标跟踪 序贯蒙特卡洛概率假设密度 特征信息
在线阅读 下载PDF
计算高效的分布式多传感器PHD融合方法
2
作者 王奎武 张秦 虎小龙 《现代雷达》 CSCD 北大核心 2024年第5期1-8,共8页
基于广义协方差交集(GCI)融合理论,提出一种计算高效的分布式多传感器多目标跟踪算法,其中概率假设密度(PHD)滤波器在每个传感器节点运行,进行滤波处理。GCI用于融合多个PHD时,融合密度包括大量融合假设,这些假设随着高斯分量的数量增... 基于广义协方差交集(GCI)融合理论,提出一种计算高效的分布式多传感器多目标跟踪算法,其中概率假设密度(PHD)滤波器在每个传感器节点运行,进行滤波处理。GCI用于融合多个PHD时,融合密度包括大量融合假设,这些假设随着高斯分量的数量增加呈指数增长。因此,GCI融合在实际运行中往往难以计算。为了提高多传感器融合的运算效率,文中通过距离度量将高斯分量聚类,然后进行孤立。距离度量可计算出目标融合后的密度权重,丢弃权重可忽略不计的融合假设,就能够构建简化的近似密度函数。分析表明,所提出的融合算法相较于传统的GCI融合算法,计算效率能够呈倍数提升。在先后出现12个目标的仿真场景中,通过实验验证了所提融合算法的有效性。 展开更多
关键词 多目标跟踪 广义协方差交集 高斯混合概率假设密度滤波器 传感器融合 计算效率
在线阅读 下载PDF
改进的邻近目标GM-PHD跟踪算法
3
作者 池桂林 胡磊力 周德召 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第4期112-118,共7页
针对目标跟踪系统在邻近目标场景下难以进行精确估计的问题,提出一种改进的邻近目标GM-PHD跟踪算法。该算法通过构建基于预测权值和速度参数的自适应门限,有效避免了杂波对算法更新步骤带来的巨大迭代负担。同时,我们充分考虑了目标邻... 针对目标跟踪系统在邻近目标场景下难以进行精确估计的问题,提出一种改进的邻近目标GM-PHD跟踪算法。该算法通过构建基于预测权值和速度参数的自适应门限,有效避免了杂波对算法更新步骤带来的巨大迭代负担。同时,我们充分考虑了目标邻近时量测的可能分布情况,针对目标与量测的“一对零”和“一对多”现象,提出了一种新的权重分配修正方法。结果表明,目标邻近时,改进后的算法在目标数和目标状态估计方面均优于传统算法,能够显著提高跟踪准确度。 展开更多
关键词 多目标跟踪 概率假设密度 权值重分配 邻近目标跟踪
在线阅读 下载PDF
采用统计线性回归的改进ATBI-GMPHD滤波
4
作者 池桂林 胡磊力 周德召 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第S01期269-275,共7页
提出一种改进的自适应新生目标GM-PHD算法。该算法以存活目标的量测更新权值构建“似然函数”,通过该函数确定量测来源并对新生目标权值做重分配,有效解决了归一化失衡问题。在量测方程高度非线性情况下,引入统计线性回归方法对量测方... 提出一种改进的自适应新生目标GM-PHD算法。该算法以存活目标的量测更新权值构建“似然函数”,通过该函数确定量测来源并对新生目标权值做重分配,有效解决了归一化失衡问题。在量测方程高度非线性情况下,引入统计线性回归方法对量测方程进行线性化近似,求解新生目标预测均值和协方差。仿真结果表明,在新生目标信息先验缺失时,改进后的算法具有良好的跟踪精度和较低的计算量。 展开更多
关键词 多目标跟踪 概率假设密度 自适应新生目标强度 随机有限集
在线阅读 下载PDF
基于椭圆随机超曲面模型CPHD滤波器的多扩展目标跟踪算法
5
作者 滕明 侯亚威 李伟杰 《现代雷达》 CSCD 北大核心 2024年第5期26-30,共5页
复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,... 复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,采用ERHM描述扩展目标的量测源分布,并利用无迹变换嵌入CPHD滤波流程;最后,仿真实验结果表明,ERHM-CPHD滤波器对椭圆扩展目标的跟踪性能优于传统的伽马高斯逆威沙特CPHD滤波器,在杂波密度较高、目标新生的位置比较确定的场景或者扩展目标数目较多时,对扩展目标的参数估计更为准确。所提方法在高分辨率雷达多目标跟踪方面具备很好的运用前景。 展开更多
关键词 多扩展目标跟踪 椭圆随机超曲面 势概率假设密度滤波器 无迹变换
在线阅读 下载PDF
一种改进的GM-C-CPHD空间多目标跟踪算法 被引量:1
6
作者 谢贝旭 张艳 +1 位作者 陈金涛 张任莉 《上海航天(中英文)》 CSCD 2024年第1期89-96,共8页
随着空间目标的数目急剧上升,提高空间多目标跟踪精度成为必然要求,但空间多目标跟踪存在轨道动力学模型不完善的问题。针对该问题,提出一种改进的高斯混合势概率假设密度滤波(GM-C-CPHD)算法。通过在轨道动力学模型中考虑一个不确定性... 随着空间目标的数目急剧上升,提高空间多目标跟踪精度成为必然要求,但空间多目标跟踪存在轨道动力学模型不完善的问题。针对该问题,提出一种改进的高斯混合势概率假设密度滤波(GM-C-CPHD)算法。通过在轨道动力学模型中考虑一个不确定性模型参数,即面质比参数(AMR),基于协方差传递面质比参数对位置、速度状态估计的影响,提高空间目标跟踪精度。仿真分析表明:相对于GM-CPHD滤波器,目标数量的跟踪和状态估计性能均有所提高,具有良好的应用前景。 展开更多
关键词 空间多目标跟踪 高斯混合 势概率假设密度滤波 不确定性参数 面质比(AMR)
在线阅读 下载PDF
一种基于模糊聚类的PHD航迹维持算法 被引量:10
7
作者 欧阳成 姬红兵 田野 《电子学报》 EI CAS CSCD 北大核心 2012年第6期1284-1288,共5页
针对杂波环境下数量变化的多目标航迹关联问题,提出一种基于模糊聚类的PHD航迹维持算法.该算法充分利用多帧信息,对当前时刻状态进行多步预测,并根据惯性进行加权,然后利用模糊聚类求得当前估计属于每条航迹的隶属度,从而得到最终的航迹... 针对杂波环境下数量变化的多目标航迹关联问题,提出一种基于模糊聚类的PHD航迹维持算法.该算法充分利用多帧信息,对当前时刻状态进行多步预测,并根据惯性进行加权,然后利用模糊聚类求得当前估计属于每条航迹的隶属度,从而得到最终的航迹.与传统的估计与航迹关联算法不同,该算法在更新每条航迹信息时,不仅仅是简单地对相邻帧之间的对数似然比进行求和,而是通过加权聚类等操作综合考虑了多帧信息.实验结果表明,所提算法能够更好地保持目标航迹,即使在目标出现交叉的地方也能达到很好的跟踪精度,具有较强的鲁棒性和优良的航迹维持性能. 展开更多
关键词 模糊聚类 概率假设密度滤波 数据关联 航迹维持
在线阅读 下载PDF
PHD粒子滤波中目标状态提取方法研究 被引量:7
8
作者 唐续 魏平 陈欣 《电子与信息学报》 EI CSCD 北大核心 2010年第11期2691-2694,共4页
采用概率假设密度(PHD)粒子滤波进行多目标跟踪时,各时刻的目标状态表现为大量的加权粒子,需以一定方法从该粒子近似中提取出来。该文提出一种增强的目标状态提取方法,先以k-means算法对粒子进行空间分布的聚类,再于各类中寻找粒子权的... 采用概率假设密度(PHD)粒子滤波进行多目标跟踪时,各时刻的目标状态表现为大量的加权粒子,需以一定方法从该粒子近似中提取出来。该文提出一种增强的目标状态提取方法,先以k-means算法对粒子进行空间分布的聚类,再于各类中寻找粒子权的峰值位置作为目标状态的估计。仿真结果表明:由于综合利用了粒子的权值和空间分布信息,该算法具有比现有算法更小的目标状态估计误差。 展开更多
关键词 多目标跟踪 贝叶斯滤波 粒子滤波 概率假设密度 聚类
在线阅读 下载PDF
基于PHD的多扩展目标联合检测、跟踪与分类算法 被引量:4
9
作者 王震 敬忠良 +2 位作者 雷明 秦彦源 董鹏 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第11期1589-1596,共8页
针对杂波和噪声背景下空间距离较近的扩展目标数目和状态难以估计的问题,提出了基于扩展目标概率假设密度滤波器(ET-PHD)的多目标联合检测、跟踪与分类算法,并给出了该算法基于粒子滤波的实现方法.算法在滤波器中引入了属性量测信息,预... 针对杂波和噪声背景下空间距离较近的扩展目标数目和状态难以估计的问题,提出了基于扩展目标概率假设密度滤波器(ET-PHD)的多目标联合检测、跟踪与分类算法,并给出了该算法基于粒子滤波的实现方法.算法在滤波器中引入了属性量测信息,预测阶段的粒子按照其类别进行传播,更新阶段对所有粒子进行联合更新,更新结束后将粒子按照类别进行分类,各类别的粒子集表示了其相应类别目标的PHD分布.该算法具有模块化结构,计算复杂度为O(mn).数值仿真场景包含两类扩展目标并行运动和两类扩展目标交叉运动.结果表明,该算法可以同时估计扩展目标的类别、数目和状态,并且平均最优次模式分配距离相比传统算法的降低幅度超过50%. 展开更多
关键词 多扩展目标跟踪 扩展目标概率假设密度滤波器 类别辅助目标跟踪 联合检测 跟踪与分类
在线阅读 下载PDF
多元假设检验GMPHD轨迹跟踪 被引量:6
10
作者 黄志蓓 孙树岩 吴健康 《电子与信息学报》 EI CSCD 北大核心 2010年第6期1289-1294,共6页
由于在军事和民事领域逐步广泛的应用,数目不定的多目标跟踪技术正受到越来越多的关注。概率假设密度(PHD)滤波方法,特别是具有闭式递归的高斯混合概率假设密度(GMPHD)技术,在噪声和漏警等影响下仍能形成优越的群目标跟踪性能。然而PHD... 由于在军事和民事领域逐步广泛的应用,数目不定的多目标跟踪技术正受到越来越多的关注。概率假设密度(PHD)滤波方法,特别是具有闭式递归的高斯混合概率假设密度(GMPHD)技术,在噪声和漏警等影响下仍能形成优越的群目标跟踪性能。然而PHD滤波器并不能实现多目标航迹跟踪,而其与传统数据互联的结合,复杂度高且跟踪效果不尽如人意。在该文中,各目标的航迹信息以假设形式表述,数据互联则是通过使用经典的多元假设检测方法判决假设矩阵实现。其与GMPHD的结合不仅实现了数据互联和轨迹管理,还因为积累时间信息大大降低了杂波干扰的影响。实验结果证明,该算法可以对多个目标所形成的轨迹实施正确跟踪,同时,计算量的大幅度降低带来了跟踪系统可实现性的提高。 展开更多
关键词 多目标航迹跟踪 贝叶斯滤波 概率假设密度 高斯混合模型 多元假设检验
在线阅读 下载PDF
PHD多目标跟踪算法及参数影响分析 被引量:4
11
作者 吉楠 董福安 +1 位作者 杨珺 高生强 《电光与控制》 北大核心 2009年第1期75-79,共5页
多目标跟踪的关键就是对目标数和目标状态的准确估计。将目标集合看成一个随机集,并且目标数也是变化的。采用一阶统计矩近似表示状态空间的概率密度,通过蒙特卡罗模拟近似表示一阶统计矩,从而实现多目标跟踪。实验表明,在杂波环境下,PH... 多目标跟踪的关键就是对目标数和目标状态的准确估计。将目标集合看成一个随机集,并且目标数也是变化的。采用一阶统计矩近似表示状态空间的概率密度,通过蒙特卡罗模拟近似表示一阶统计矩,从而实现多目标跟踪。实验表明,在杂波环境下,PHD算法可以实现多目标跟踪,并且各参数对跟踪精度有一定的影响。 展开更多
关键词 多目标跟踪 有限集统计 概率假设密度(phd) 粒子滤波
在线阅读 下载PDF
基于JMS-SMC-PHD滤波的检测前跟踪算法 被引量:6
12
作者 薛秋条 宁巧娇 +2 位作者 吴孙勇 蔡如华 伍雯雯 《红外技术》 CSCD 北大核心 2020年第8期783-788,共6页
针对低信噪比条件下机动目标的检测与跟踪问题,提出跳跃马尔可夫系统下的序贯蒙特卡罗概率假设密度(JMS-SMC-PHD)滤波的检测前跟踪算法。该算法在机动目标数目和模型未知情况下,直接利用红外传感器量测数据,通过在目标状态矢量中增加模... 针对低信噪比条件下机动目标的检测与跟踪问题,提出跳跃马尔可夫系统下的序贯蒙特卡罗概率假设密度(JMS-SMC-PHD)滤波的检测前跟踪算法。该算法在机动目标数目和模型未知情况下,直接利用红外传感器量测数据,通过在目标状态矢量中增加模型变量并利用马尔可夫模型概率转移矩阵结合序贯蒙特卡罗概率假设密度(SMC-PHD)滤波,实现机动弱小目标的检测前跟踪。仿真结果表明所提方法可以有效地实现目标的检测与跟踪。 展开更多
关键词 检测前跟踪 跳跃马尔可夫系统 概率假设密度滤波 序贯蒙特卡罗 机动弱小目标
在线阅读 下载PDF
一种新的未知杂波环境下的PHD滤波器 被引量:9
13
作者 李翠芸 江舟 姬红兵 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期18-23,共6页
针对多目标跟踪中概率假设密度(PHD)滤波器在杂波模型与先验知识不匹配情况下滤波性能急剧下降的缺点,将增广状态空间引入PHD滤波器,提出了一种新的未知杂波环境下的PHD滤波器.该滤波器利用增广状态空间区分目标状态空间与杂波状态空间... 针对多目标跟踪中概率假设密度(PHD)滤波器在杂波模型与先验知识不匹配情况下滤波性能急剧下降的缺点,将增广状态空间引入PHD滤波器,提出了一种新的未知杂波环境下的PHD滤波器.该滤波器利用增广状态空间区分目标状态空间与杂波状态空间,通过量测对杂波模型进行估计,不需要杂波先验知识,避免了因杂波强度的先验知识选择不当而造成PHD滤波器跟踪性能下降的问题.仿真结果表明,该算法在未知杂波环境下,具有稳定的跟踪效果;在保证实时性的前提下,其跟踪精度与传统PHD滤波器在杂波模型匹配情况下相当. 展开更多
关键词 多目标跟踪 概率假设密度 未知杂波 增广状态空间
在线阅读 下载PDF
一种具有信息保持能力的GM-PHD滤波器 被引量:8
14
作者 刘宗香 谢维信 +1 位作者 王品 余友 《电子学报》 EI CAS CSCD 北大核心 2013年第8期1603-1608,共6页
概率假设密度(PHD)滤波器是解决虚警、漏检和目标数未知情况下多目标跟踪问题的新方法.然而在该滤波器中已存在的目标一旦在某个时刻不能被传感器检测到,漏检目标的大量信息会被滤波器丢弃.为解决漏检目标的信息丢失问题,对PHD滤波器的... 概率假设密度(PHD)滤波器是解决虚警、漏检和目标数未知情况下多目标跟踪问题的新方法.然而在该滤波器中已存在的目标一旦在某个时刻不能被传感器检测到,漏检目标的大量信息会被滤波器丢弃.为解决漏检目标的信息丢失问题,对PHD滤波器的预测和更新方程进行了修正,提出了一种具有信息保持能力的PHD滤波器.在此基础上提出了适用于线性高斯模型的修正PHD滤波器高斯混合(GM)实现算法.仿真实验结果表明,与现有的PHD滤波器相比,在存在漏检的情况下所提出的GM-PHD滤波器能够提供更好的多目标跟踪能力. 展开更多
关键词 多目标跟踪 概率假设密度滤波器 高斯混合实现 线性高斯模型
在线阅读 下载PDF
基于随机有限集的UPF-CPHD多目标跟踪 被引量:8
15
作者 王慧斌 陈哲 +1 位作者 王鑫 马玉 《通信学报》 EI CSCD 北大核心 2012年第12期147-153,共7页
提出一种基于随机有限集的无迹粒子基数概率假设密度滤波(UPF-CPHD,unscented particle fil-ter-cardinality probability hypothesis density)的多目标跟踪方法。在粒子滤波框架下采用随机有限集(RFS,randomfinite sets)对多目标状态... 提出一种基于随机有限集的无迹粒子基数概率假设密度滤波(UPF-CPHD,unscented particle fil-ter-cardinality probability hypothesis density)的多目标跟踪方法。在粒子滤波框架下采用随机有限集(RFS,randomfinite sets)对多目标状态和观测进行描述。在UPF滤波框架下引入CPHD算法同时递推目标状态和目标数目,并计算最新观测信息,估计结果更加精确,弥补PHD估计目标数目不可靠的缺点。仿真实验表明,UPF-CPHD多目标跟踪方法能够降低超过50%的目标数目估计误差,并提高目标状态的估计精度。 展开更多
关键词 随机有限集 多目标跟踪 无迹粒子滤波 基数概率假设密度滤波
在线阅读 下载PDF
基于GM-CPHD滤波算法的主动声呐目标跟踪 被引量:4
16
作者 陈晓 李亚安 +1 位作者 李余兴 蔚婧 《西北工业大学学报》 EI CAS CSCD 北大核心 2018年第4期656-663,共8页
水下多目标运动状态估计一直是主动声呐目标跟踪的难点问题。为了实现对可变数目水下多目标运动状态的估计,将随机有限集理论应用于多目标跟踪,不仅避免了多目标跟踪数据关联问题,而且解决了多目标跟踪过程中可变数目目标运动状态估计... 水下多目标运动状态估计一直是主动声呐目标跟踪的难点问题。为了实现对可变数目水下多目标运动状态的估计,将随机有限集理论应用于多目标跟踪,不仅避免了多目标跟踪数据关联问题,而且解决了多目标跟踪过程中可变数目目标运动状态估计。传统的PHD滤波算法对目标数目估计存在敏感性,虽然CPHD滤波算法引入了对势分布的估计提高了对目标数目估计的精确性,但同时也增加了其计算量。对于高斯线性目标跟踪系统,GM-CPHD滤波算法对目标数目的估计比GM-PHD滤波更加精确。利用椭圆跟踪门策略减小了GM-CPHD滤波算法的计算量。同时,结合水下目标跟踪的特点,利用声呐方程得到一定虚警概率条件下的检测概率与距离关系的解析式,提出了一种适合于水下目标跟踪的自适应检测概率GM-CPHD滤波算法,仿真结果表明:该算法在多目标跟踪中可以更有效地实现目标状态及数目的估计。 展开更多
关键词 多目标跟踪 随机有限集 GM-phd GM-Cphd 声呐方程
在线阅读 下载PDF
一种改进的CPHD多目标跟踪算法 被引量:12
17
作者 欧阳成 姬红兵 张俊根 《电子与信息学报》 EI CSCD 北大核心 2010年第9期2112-2118,共7页
CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标... CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标进行航迹关联,在此基础上对修剪合并后各个高斯分量的权值进行两次分配。首先对超过检测门限的高斯分量权值进行分配,有效解决了目标漏检问题,然后基于一个目标只可能产生一个观测的事实进行第2次分配,改善了目标发生交叉时的算法性能。实验结果表明,所提方法在多目标状态估计和航迹维持方面均优于普通的CPHD算法。 展开更多
关键词 多目标跟踪 Cphd滤波 航迹维持 漏检
在线阅读 下载PDF
未知杂波环境的GM-PHD平滑滤波器 被引量:4
18
作者 李翠芸 江舟 +1 位作者 李斌 周旋 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第5期98-104,共7页
针对未知杂波环境下的多目标跟踪问题,提出一种未知杂波环境下的高斯混合概率假设密度前向后向平滑算法.该算法首先利用有限混合模型对杂波强度进行估计,克服了多目标跟踪中概率假设密度滤波器在杂波与先验知识不匹配情况下滤波性能急... 针对未知杂波环境下的多目标跟踪问题,提出一种未知杂波环境下的高斯混合概率假设密度前向后向平滑算法.该算法首先利用有限混合模型对杂波强度进行估计,克服了多目标跟踪中概率假设密度滤波器在杂波与先验知识不匹配情况下滤波性能急剧下降的缺点;其次采用平滑递归,利用多个量测数据对滤波值进行平滑,进而减小目标的位置误差.仿真结果表明,这种算法在未知杂波环境下具有较好的跟踪性能,且优于未进行平滑的未知杂波高斯混合概率假设密度滤波器. 展开更多
关键词 未知杂波 高斯混合概率假设密度 平滑 多目标跟踪
在线阅读 下载PDF
多普勒盲区下基于GM-PHD的雷达多目标跟踪算法 被引量:8
19
作者 尉强 刘忠 《雷达学报(中英文)》 CSCD 2017年第1期34-42,共9页
在多普勒雷达目标跟踪过程中,由于多普勒盲区(DBZ)的存在使得跟踪问题更为复杂。针对该问题,该文基于高斯混合概率假设密度(GM-PHD)提出了一种适用于多普勒盲区的多目标跟踪算法。该算法在常规检测概率模型中引入最小可检测速度(MDV)信... 在多普勒雷达目标跟踪过程中,由于多普勒盲区(DBZ)的存在使得跟踪问题更为复杂。针对该问题,该文基于高斯混合概率假设密度(GM-PHD)提出了一种适用于多普勒盲区的多目标跟踪算法。该算法在常规检测概率模型中引入最小可检测速度(MDV)信息,并将该检测概率模型应用于传统GM-PHD更新方程中,推导出多普勒盲区下的GM-PHD更新方程。蒙特卡罗仿真实验结果表明:与只有多普勒量测信息的传统GM-PHD算法相比,新算法在较小的MDV条件下能够明显提高雷达对运动目标的跟踪性能。 展开更多
关键词 多普勒盲区 最小可检测速度 多普勒信息 高斯混合概率假设密度
在线阅读 下载PDF
一种新的多机动目标跟踪的GMPHD滤波算法 被引量:7
20
作者 郝燕玲 孟凡彬 +1 位作者 王素鑫 孙枫 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第7期873-877,共5页
针对多机动目标跟踪的传统数据关联算法约束条件苛刻、估计精度低、计算量大等问题,提出了一种基于随机集理论的非数据关联的多机动目标跟踪算法.该算法将高斯混合概率假设密度(GMPHD)滤波与"当前"统计模型的优点相结合,绕过... 针对多机动目标跟踪的传统数据关联算法约束条件苛刻、估计精度低、计算量大等问题,提出了一种基于随机集理论的非数据关联的多机动目标跟踪算法.该算法将高斯混合概率假设密度(GMPHD)滤波与"当前"统计模型的优点相结合,绕过了棘手的数据关联问题,能高效处理目标数较大的机动跟踪问题.在漏检、虚警、多机动目标交叉杂波复杂环境下进行了仿真实验,结果表明,该算法具有较高的跟踪精度和稳健的跟踪性能. 展开更多
关键词 多机动目标跟踪 随机有限集 高斯混合概率假设密度滤波 扩展卡尔曼滤波
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部