期刊文献+
共找到314篇文章
< 1 2 16 >
每页显示 20 50 100
DAMAGE CLASSIFICATION BY PROBABILISTIC NEURAL NETWORKS BASED ON LATENT COMPONENTS FOR TIME-VARYING SYSTEM 被引量:1
1
作者 袁健 周燕 吕欣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期259-267,共9页
A new approach to damage classification for health monitoring of a time-varylng system is presented. The functional-series time-dependent auto regressive moving average (FS-TARMA) time series model is applied to the... A new approach to damage classification for health monitoring of a time-varylng system is presented. The functional-series time-dependent auto regressive moving average (FS-TARMA) time series model is applied to the vibration signal observed in the time-varying system for estimating the TAR/TMA parameters and the innovation variance. These parameters are the functions of the time, represented by a group of projection coefficients on the certain functional subspace with specific basis functions. The estimated TAR/TMA parameters and the innovation variance are further used to calculate the latent components (LCs) as the more informative data for health monitoring evaluation, based on an eigenvalue decomposition technique. LCs are then combined and reduced to numerical values (NVs) as feature sets, which are input to a probabilistic neural network (PNN) for the damage classification. For the evaluation of the proposed method, numerical simulations of the damage classification for a tlme-varylng system are used, in which different classes of damage are modeled by the mass or stiffness reductions. It is demonstrated that the method can identify the damages in the course of operation and the change of parameters on the time-varying background of the system. 展开更多
关键词 damage detection time-varying system feature extraction/reduction probabilistic neural networks
在线阅读 下载PDF
Nonlinear model predictive control with guaranteed stability based on pseudolinear neural networks
2
作者 WANGYongji WANGHong 《Journal of Chongqing University》 CAS 2004年第1期26-29,共4页
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ... A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems. 展开更多
关键词 pseudolinear neural networks (pnn) nonlinear model predictive control continuous stirred tank reactor (CSTR) asymptotic stability
在线阅读 下载PDF
CPSO优化PNN的陀螺故障诊断方法
3
作者 张华强 贾明玉 +2 位作者 赵善飞 芦男 陈雨 《中国惯性技术学报》 EI CSCD 北大核心 2024年第6期630-636,共7页
针对惯性导航系统中的陀螺仪输出信号非线性、故障特征不明显的问题,为提高惯导系统中惯性器件的故障诊断正确率,提出一种基于改进粒子群算法(PSO)优化概率神经网络(PNN)的陀螺信号故障诊断方法。首先,针对光纤陀螺运行过程中常见的四... 针对惯性导航系统中的陀螺仪输出信号非线性、故障特征不明显的问题,为提高惯导系统中惯性器件的故障诊断正确率,提出一种基于改进粒子群算法(PSO)优化概率神经网络(PNN)的陀螺信号故障诊断方法。首先,针对光纤陀螺运行过程中常见的四种故障信号,建立数学模型并进行小波变换提取其故障特征系数;其次,使用Cubic混沌映射以及非线性递减的惯性权重系数对粒子群进行粒子更新,并用于概率神经网络的最优平滑因子选择;最后,训练概率神经网络对陀螺仪故障信号进行分类和诊断。离线测试结果表明,CPSO算法优化的PNN网络针对四种故障分类的平均正确率达到95.8%。 展开更多
关键词 粒子群优化算法 概率神经网络 陀螺故障诊断
在线阅读 下载PDF
Fault prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural network model 被引量:7
4
作者 Jun Ling Gao-Jun Liu +2 位作者 Jia-Liang Li Xiao-Cheng Shen Dong-Dong You 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第8期13-23,共11页
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ... Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified. 展开更多
关键词 Fault prediction Nuclear power machinery Steam turbine Recurrent neural network probabilistic principal component analysis Bayesian confidence
在线阅读 下载PDF
基于EEMD-Renyi熵和PCA-PNN的滚动轴承故障诊断 被引量:8
5
作者 窦东阳 李丽娟 赵英凯 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第B09期107-111,共5页
针对滚动轴承故障特征提取与状态监测问题,提出一种基于集合经验模式分解(EEMD)、Renyi熵、主元分析(PCA)和概率神经网络(PNN)的新方法.首先,将轴承振动信号通过EEMD分解成一组本征模态函数(IMF),计算每个IMF分量的Renyi熵值作为表征故... 针对滚动轴承故障特征提取与状态监测问题,提出一种基于集合经验模式分解(EEMD)、Renyi熵、主元分析(PCA)和概率神经网络(PNN)的新方法.首先,将轴承振动信号通过EEMD分解成一组本征模态函数(IMF),计算每个IMF分量的Renyi熵值作为表征故障特征的向量,采用主元分析(PCA)对特征降维,提取主元输入概率神经网络进行故障分类.通过SKF6203轴承的正常、内圈点蚀、外圈点蚀和滚动体点蚀这4类状态的诊断实验验证了方法的有效性,诊断正确率为91.7%. 展开更多
关键词 故障诊断 滚动轴承 集合经验模式分解 RENYI熵 主元分析 概率神经网络
在线阅读 下载PDF
基于PNN的水轮发电机组振动故障诊断 被引量:11
6
作者 熊建秋 李祚泳 +1 位作者 汪嘉杨 徐婷婷 《水力发电》 北大核心 2005年第7期55-57,共3页
概率神经网络(PNN)是一种训练速度快、结构简洁明了、应用广泛的人工神经网络。它采用贝叶斯分类决策理论建立系统的数学模型,以高斯函数作为激励函数,具有非线性处理和抗干扰能力强等特点。提出基于PNN的水轮发电机组振动故障诊断方法... 概率神经网络(PNN)是一种训练速度快、结构简洁明了、应用广泛的人工神经网络。它采用贝叶斯分类决策理论建立系统的数学模型,以高斯函数作为激励函数,具有非线性处理和抗干扰能力强等特点。提出基于PNN的水轮发电机组振动故障诊断方法,并在水轮发电机组振动频谱波形特征的基础上,对几种典型故障模式进行了实例研究。理论分析和实例结果验证了基于PNN的水轮发电机组振动故障诊断方法是正确和有效的。 展开更多
关键词 概率神经网络 水轮发电机组 振动 故障诊断 预测
在线阅读 下载PDF
基于优化的VMD融合信息熵和FA_PNN的风电机组齿轮箱故障诊断 被引量:24
7
作者 党建 罗燚 +3 位作者 田录林 田琦 王伟博 贾嵘 《太阳能学报》 EI CAS CSCD 北大核心 2021年第1期198-204,共7页
针对风电机组齿轮箱在故障信号处理、特征提取和故障诊断存在的问题,提出一种基于优化的变分模态分解(VMD)融合信息熵和萤火虫优化的概率神经网络(FAPNN)的风电机组齿轮箱故障诊断方法。首先利用皮尔逊相关系数法来确定VMD的分解数量和... 针对风电机组齿轮箱在故障信号处理、特征提取和故障诊断存在的问题,提出一种基于优化的变分模态分解(VMD)融合信息熵和萤火虫优化的概率神经网络(FAPNN)的风电机组齿轮箱故障诊断方法。首先利用皮尔逊相关系数法来确定VMD的分解数量和惩罚因子,并利用VMD分解齿轮箱振动信号获取多个固有模态分量,在此基础上融合时域、频域及时频域等信号故障特征熵,最后用FAPNN网络进行故障识别分类,仿真结果验证了所提出算法在风电机组齿轮箱早期故障诊断研究中的有效性和可行性。 展开更多
关键词 风电机组 故障诊断 特征提取 融合信息熵 概率神经网络
在线阅读 下载PDF
基于PNN的退化交通标志图像的识别算法研究 被引量:10
8
作者 李伦波 马广富 《电子与信息学报》 EI CSCD 北大核心 2008年第7期1703-1707,共5页
为了识别退化的交通标志图像,该文采用一种新的特征提取算法。该算法在处理图像退化问题时,采用模糊-仿射联合不变矩直接提取图像的特征,从而避免了需要较大计算量的图像复原处理过程。针对各阶模糊-仿射联合不变矩数量级差异较大问题,... 为了识别退化的交通标志图像,该文采用一种新的特征提取算法。该算法在处理图像退化问题时,采用模糊-仿射联合不变矩直接提取图像的特征,从而避免了需要较大计算量的图像复原处理过程。针对各阶模糊-仿射联合不变矩数量级差异较大问题,提出一种数量级标准化算法。在深入分析PNN与K-means聚类算法的基础上,提出采用全局K-均值算法优化设计概率神经网络分类器,并将其用于交通标志图像的分类识别。仿真结果表明:模糊-仿射联合不变矩是一种有效的处理退化交通标志图像的方法,所设计的概率神经网络分类器不仅具有精简的结构而且具有较好的推广性能。 展开更多
关键词 模式识别 概率神经网络 交通标志 模糊-仿射联合不变矩 全局K-均值算法
在线阅读 下载PDF
基于PNN神经网络的电控发动机故障诊断 被引量:9
9
作者 巴寅亮 王书提 +2 位作者 李春兰 郭增波 加克.乌云才次克 《现代电子技术》 北大核心 2016年第20期146-148,153,共4页
PNN是前馈型神经网络,具有强大的非线性模式分类能力。提出运用PNN神经网络对发动机电控系统进行故障诊断的方法,介绍了PNN神经网络及其工作原理,以伊兰特汽车发动机电控系统为研究对象,让发动机在怠速情况下,并对其进行故障设置,运用金... PNN是前馈型神经网络,具有强大的非线性模式分类能力。提出运用PNN神经网络对发动机电控系统进行故障诊断的方法,介绍了PNN神经网络及其工作原理,以伊兰特汽车发动机电控系统为研究对象,让发动机在怠速情况下,并对其进行故障设置,运用金德KT600故障诊断仪采集发动机故障数据流,利用PNN神经网络建立诊断模型,并对网络诊断模型进行验证,诊断结果完全正确,且训练速度非常快。实验结果表明PNN神经网络具有较强的泛化能力和实用价值。 展开更多
关键词 pnn神经网络 发动机 电控系统 故障诊断
在线阅读 下载PDF
基于PNN的山区高速公路路段安全状态评价 被引量:7
10
作者 温惠英 罗钧 李俊辉 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第8期113-117,共5页
在对路段安全状态和山区高速公路进行定义的前提下,提出了山区高速公路路段的定义及其安全状态评价指标及评价标准.通过在需要进行评价的路段以及路段的上游安装交通流信息采集设备来获取速度参数.以山区高速公路交通事故历史数据和实... 在对路段安全状态和山区高速公路进行定义的前提下,提出了山区高速公路路段的定义及其安全状态评价指标及评价标准.通过在需要进行评价的路段以及路段的上游安装交通流信息采集设备来获取速度参数.以山区高速公路交通事故历史数据和实时的速度参数作为评价指标,参考提出的评价标准,建立了基于概率神经网络(PNN)的路段安全状态评价模型.仿真结果表明,该模型能够对山区高速公路路段安全状态进行评价. 展开更多
关键词 高速公路 山区 安全状态 评价 速度参数 概率神经网络
在线阅读 下载PDF
基于PNN神经网络的掘进机截齿磨损程度识别研究 被引量:14
11
作者 张强 王禹 王琛淇 《煤炭科学技术》 CAS CSCD 北大核心 2019年第6期37-44,共8页
针对掘进机截齿磨损在线识别问题,提出一种基于PNN神经网络的截齿磨损程度多特征信号识别方法,提取不同磨损程度的截齿在截割过程中的振动和声发射特征信号,分别分析振动加速度、声发射信号峰值以及2种特征信号频域图的均方根这4个特征... 针对掘进机截齿磨损在线识别问题,提出一种基于PNN神经网络的截齿磨损程度多特征信号识别方法,提取不同磨损程度的截齿在截割过程中的振动和声发射特征信号,分别分析振动加速度、声发射信号峰值以及2种特征信号频域图的均方根这4个特征参数,获取振动信号、声发射信号与不同磨损程度截齿的变化规律。建立5种不同磨损程度截齿的多特征信号样本数据库,采用多特征信号样本对PNN神经网络进行学习和训练,建立截齿磨损程度的识别模型,实现截齿磨损程度的精确识别。结果表明:基于PNN神经网络的截齿预测磨损状态识别模型识别精度较高,识别准确率和预测准确率约为93.3%和95.0%,与BP神经网络方法相比分别提高了3.3%和15.0%。因此该神经网络具有良好的可靠性与精确性。 展开更多
关键词 掘进机 截齿磨损 振动信号 声发射信号 pnn神经网络
在线阅读 下载PDF
基于BAS优化PNN网络的电机轴承故障诊断方法 被引量:5
12
作者 刘霞 王鑫宇 +1 位作者 路敬祎 李其浩 《吉林大学学报(信息科学版)》 CAS 2021年第4期439-444,共6页
针对电机轴承故障识别准确率不高问题,提出了一种天牛须搜索算法(BAS:Beetle Antennae Search)与概率神经网络(PNN:Probabilistic Neural Network)相结合的滚动轴承故障诊断方法。该方法结合LLE(Locally Linear Embedding)算法得到振动... 针对电机轴承故障识别准确率不高问题,提出了一种天牛须搜索算法(BAS:Beetle Antennae Search)与概率神经网络(PNN:Probabilistic Neural Network)相结合的滚动轴承故障诊断方法。该方法结合LLE(Locally Linear Embedding)算法得到振动信号的敏感特征,保证振动信号的可靠性和敏感性。并采用天牛须搜索算法对PNN网络中的平滑参数进行寻优,避免主观经验选取参数对诊断结果的影响。通过实验验证了该方法的有效性,可实现故障类型准确判别。 展开更多
关键词 电机轴承 故障诊断 天牛须搜索算法 概率神经网络 局部线性嵌入
在线阅读 下载PDF
基于多域特征提取与改进PSO-PNN的道岔故障诊断 被引量:15
13
作者 孔令刚 焦相萌 +1 位作者 陈光武 范多旺 《铁道科学与工程学报》 CAS CSCD 北大核心 2020年第6期1327-1336,共10页
针对S700K常见的8种故障模式和正常模式所对应功率曲线,提出一种基于概率神经网络(PNN)与改进的粒子群算法(PSO)相结合的道岔故障诊断方法。首先,在9种功率曲线上分别提取时域、频域特征统计量和时频域小波系数,并用主成分分析法降维每... 针对S700K常见的8种故障模式和正常模式所对应功率曲线,提出一种基于概率神经网络(PNN)与改进的粒子群算法(PSO)相结合的道岔故障诊断方法。首先,在9种功率曲线上分别提取时域、频域特征统计量和时频域小波系数,并用主成分分析法降维每个域的特征量,得到特征向量;其次,以3个改进的PSO-PNN做分类器,并对分类器进行训练和预测;最后,3个分类器的预测结果做三取二表决。仿真结果表明:该方法能有效提高道岔故障诊断的准确率,具有良好的容错性。 展开更多
关键词 道岔故障诊断 S700K转辙机 概率神经网络 粒子群算法 三取二表决
在线阅读 下载PDF
基于COP与改进PNN的除湿机故障诊断研究 被引量:2
14
作者 黄志刚 刘浩 +1 位作者 刘顺波 杨治国 《制冷与空调(四川)》 2010年第5期66-69,共4页
COP作为制冷系统中的重要性能参数,直接反映制冷系统的效率及运行情况。基于制冷系统的这一特点,以除湿机为例,建立了基于除湿机COP的改进PNN故障诊断模型,通过监测COP的实测值超出正常设定范围判断系统存在故障,进而对系统故障进行识别... COP作为制冷系统中的重要性能参数,直接反映制冷系统的效率及运行情况。基于制冷系统的这一特点,以除湿机为例,建立了基于除湿机COP的改进PNN故障诊断模型,通过监测COP的实测值超出正常设定范围判断系统存在故障,进而对系统故障进行识别,诊断故障发生的具体原因。实例表明,该方法用于除湿机的故障诊断切实可行。 展开更多
关键词 概率神经网络 性能系数 遗传算法 故障诊断 除湿机
在线阅读 下载PDF
基于DWT和PNN的数字图像水印算法 被引量:6
15
作者 闫凤 王立中 +2 位作者 石磊 张国英 张扬 《湘潭大学自然科学学报》 CAS 北大核心 2016年第3期89-93,共5页
针对数字信息在存储或传输过程中可能受到复制、攻击或修改的问题,提出一种基于DWT和PNN的数字图像水印算法.该算法在基于块的小波系数中选择最佳位置嵌入水印图像,采用PNN记录水印与对应图像之间的关系,在不需要原始图像和水印图像的... 针对数字信息在存储或传输过程中可能受到复制、攻击或修改的问题,提出一种基于DWT和PNN的数字图像水印算法.该算法在基于块的小波系数中选择最佳位置嵌入水印图像,采用PNN记录水印与对应图像之间的关系,在不需要原始图像和水印图像的情况下,从嵌入水印的图像中恢复水印.使用PSNR和NCC对算法进行不可见性和鲁棒性测试.实验结果表明,本文算法提取的水印图像具有优秀的不可见性和鲁棒性,能够有效应对不同类型的攻击. 展开更多
关键词 数字水印 离散小波变换 概率神经网络 峰值信噪比 归一化互相关
在线阅读 下载PDF
肤色信息马氏图的RBPNN人脸识别 被引量:3
16
作者 徐从东 罗家融 舒双宝 《光电工程》 CAS CSCD 北大核心 2008年第3期131-135,共5页
根据肤色信息在YCbCr空间分布特点,提出在基于肤色信息的马氏距离图的特征脸空间中用RBPNN神经网络进行人脸识别。该方法利用肤色信息构造图像的马氏距离图,利用K-L变换构造特征脸空间。在特征脸空间中提取图像的统计特征,以这些统计特... 根据肤色信息在YCbCr空间分布特点,提出在基于肤色信息的马氏距离图的特征脸空间中用RBPNN神经网络进行人脸识别。该方法利用肤色信息构造图像的马氏距离图,利用K-L变换构造特征脸空间。在特征脸空间中提取图像的统计特征,以这些统计特征作为输入,构造径向基概率神经网络,利用它的非线性计算和映射能力,进行人脸识别与分类。实验证明,这种方法能够有效地完成人脸识别。 展开更多
关键词 人脸识别 马氏距离图 特征脸 径向基概率神经网络
在线阅读 下载PDF
基于热图时序特征和PNN的孔洞缺陷红外无损检测方法 被引量:5
17
作者 周建民 符正晴 +1 位作者 蔡莉 李鹏 《华东交通大学学报》 2014年第2期86-90,共5页
利用热图时序特征和PNN,提出了一种以像素为单位,实现缺陷红外无损检测的新方法。该方法首先采用红外热像仪获取加热试件在降温过程中的红外时序热图;其次,提取时序热图中正常和异常区域的灰度值,建立不同区域的灰度值与时间的关系,进... 利用热图时序特征和PNN,提出了一种以像素为单位,实现缺陷红外无损检测的新方法。该方法首先采用红外热像仪获取加热试件在降温过程中的红外时序热图;其次,提取时序热图中正常和异常区域的灰度值,建立不同区域的灰度值与时间的关系,进而获得相应的初始特征;再次,采用主成分分析方法对初始特征进行提取,获得时序特征;最后,以时序特征作为训练样本,构建概率神经网络,实现孔洞缺陷检测。实验结果表明,正常区和异常区识别率分别可达到95%和85%。 展开更多
关键词 红外无损检测 时序特征 主成分分析 概率神经网络
在线阅读 下载PDF
基于PCA-PNN原理的岩爆烈度分级预测方法 被引量:63
18
作者 吴顺川 张晨曦 成子桥 《煤炭学报》 EI CAS CSCD 北大核心 2019年第9期2767-2776,共10页
根据岩爆的影响因素、特点及成因,选取围岩最大切应力、单轴抗压强度、单轴抗拉强度、应力系数、脆性系数和弹性能量指数构成岩爆预测指标体系。搜集国内外46组典型岩爆案例数据,考虑到概率神经网络(PNN)中高斯函数要求各指标变量互不相... 根据岩爆的影响因素、特点及成因,选取围岩最大切应力、单轴抗压强度、单轴抗拉强度、应力系数、脆性系数和弹性能量指数构成岩爆预测指标体系。搜集国内外46组典型岩爆案例数据,考虑到概率神经网络(PNN)中高斯函数要求各指标变量互不相关,采用主成分分析法(PCA)对原始数据预处理,消除指标间相关性并降维,得到线性无关的3个主成分即岩爆综合预测指标RCI1,RCI2,RCI3,构成概率神经网络的输入向量。将岩爆烈度分级预测视为共有4种类别的模式分类问题,在满足均匀分布的前提下,选取[0.02,1.00]内的50个Spread值,观察模型预测正确率随Spread值的变化。经测试,Spread值为0.36时,预测结果首次同时达到最优,故创建平滑因子为0.36的概率神经网络。岩爆案例数据由主成分分析法处理后分为训练样本和测试样本,对训练后的PNN网络进行性能测试,两组数据预测正确率分别为100%,90%。将该结果与随机森林(RF)模型、支持向量机(SVM)模型、人工神经网络(ANN)模型进行比较,可知PCA-PNN模型的预测结果稍好于SVM模型、ANN模型,误判率与RF模型的训练样本平均误判率、测试样本平均误判率一致。此外PNN网络收敛速度快,通常在数秒内即可完成,表明基于PCA-PNN的岩爆烈度预测模型是合理可行的。 展开更多
关键词 岩爆预测 主成分分析 概率神经网络 烈度分级
在线阅读 下载PDF
基于W-F定律和PNN模型的西安市潜水脆弱性评价 被引量:4
19
作者 董艳慧 周维博 赵平歌 《干旱地区农业研究》 CSCD 北大核心 2013年第2期209-213,224,共6页
鉴于现有的地下水脆弱性评价方法存在主观性大和不能评价水量脆弱性等问题,将心理物理学中的韦伯费希纳(W-F)定律拓广,并与概率神经网络法(PNN)相结合,提出了一种可以评价水量和水质脆弱性的方法——基于W-F拓广定律的概率神经网络法。... 鉴于现有的地下水脆弱性评价方法存在主观性大和不能评价水量脆弱性等问题,将心理物理学中的韦伯费希纳(W-F)定律拓广,并与概率神经网络法(PNN)相结合,提出了一种可以评价水量和水质脆弱性的方法——基于W-F拓广定律的概率神经网络法。利用该方法评价了2005年西安市潜水水质及水量的脆弱性,结果表明基于W-F拓广定律的概率神经网络法能避免传统方法的主观性和局限性,评价结果合理、可靠,评价范围更广,可推广应用。 展开更多
关键词 W-F拓广定律 概率神经网络 潜水 水质 水量 地下水脆弱性评价
在线阅读 下载PDF
悬臂板损伤数值模拟试验与WPNN识别方法 被引量:6
20
作者 翁光远 王社良 《西安工业大学学报》 CAS 2009年第3期290-293,共4页
通过分析小波概率神经网络(WPNN)与数据融合技术在工程结构损伤识别中的应用原理,建立了基于小波概率神经网络和数据融合技术的模型.对悬臂板结构进行了数值模拟试验,运用损伤单元数据作为输入向量训练了WPNN与数据融合的损伤识别模型,... 通过分析小波概率神经网络(WPNN)与数据融合技术在工程结构损伤识别中的应用原理,建立了基于小波概率神经网络和数据融合技术的模型.对悬臂板结构进行了数值模拟试验,运用损伤单元数据作为输入向量训练了WPNN与数据融合的损伤识别模型,并选取4个单元作为检验样本进行检验,检验的结果与数值试验分析吻合较好,从而表明,该方法在工程结构的损伤识别中有较好的应用价值. 展开更多
关键词 结构损伤 损伤识别 悬臂版 小波概率神经网络(Wpnn) 数据融合
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部