In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(...In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions.展开更多
A novel extension diagnosis method was proposed for enhancing the diagnosis ability of the conventional dissolved gas analysis. Based on the extension theory a matter-element model was established for qualitatively an...A novel extension diagnosis method was proposed for enhancing the diagnosis ability of the conventional dissolved gas analysis. Based on the extension theory a matter-element model was established for qualitatively and quantitatively describing the fault diagnosis problem of power transformers. The degree of relation based on the dependent functions was employed to determine the nature and the grade of the faults in a transformer system. And the proposed method was verified with the experimental data. The results show that accuracy rate of the diagnosis method exceeds 90% and two kinds of faults can be detected at the same time.展开更多
基金Project(50977003) supported by the National Natural Science Foundation of China
文摘In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions.
文摘A novel extension diagnosis method was proposed for enhancing the diagnosis ability of the conventional dissolved gas analysis. Based on the extension theory a matter-element model was established for qualitatively and quantitatively describing the fault diagnosis problem of power transformers. The degree of relation based on the dependent functions was employed to determine the nature and the grade of the faults in a transformer system. And the proposed method was verified with the experimental data. The results show that accuracy rate of the diagnosis method exceeds 90% and two kinds of faults can be detected at the same time.