综述了近几年微波、毫米波氮化镓高电子迁移率晶体管(Ga N HEMT)与单片微波集成电路(MMIC)在高效率、宽频带、高功率和先进热管理等方面的应用创新进展。介绍了基于Ga N HEMT器件所具有的高功率密度和高击穿电压,采用波形工程原理设计...综述了近几年微波、毫米波氮化镓高电子迁移率晶体管(Ga N HEMT)与单片微波集成电路(MMIC)在高效率、宽频带、高功率和先进热管理等方面的应用创新进展。介绍了基于Ga N HEMT器件所具有的高功率密度和高击穿电压,采用波形工程原理设计的各类开关模式的高效率功率放大器,以及基于Ga N HEMT器件的高功率密度、高阻抗的特点与先进的宽带拓扑电路和功率合成技术相结合的宽频带和高功率放大器。详细介绍了微波高端和毫米波段的高效率、宽频带和高功率放大器,多功能电路和多功能集成的Ga N MMIC。最后阐述了由于Ga N HEMT的功率密度是其他半导体器件的数倍,其先进热管理的创新研究也成为热点。展开更多
为了精确测量芯片内的温度分布,提出了一个低功耗、小尺寸的温度传感器。该传感器使用一个输出电流与绝对温度成比例(PTAT)的电流发生器检测环境温度,然后使用一个源耦合流控振荡器将PTAT电流转换成频率输出。所提出的电路采用22 nm SOI...为了精确测量芯片内的温度分布,提出了一个低功耗、小尺寸的温度传感器。该传感器使用一个输出电流与绝对温度成比例(PTAT)的电流发生器检测环境温度,然后使用一个源耦合流控振荡器将PTAT电流转换成频率输出。所提出的电路采用22 nm SOI CMOS工艺设计并制造,其有源区域占用的片上面积为0.01 mm 2,电源电压为0.8 V。测量结果表明,所提出的架构能够在-40^+85℃的温度范围内工作。工作于+85℃时,温度传感器的功耗达到最大值,为500 nW。使用单点校准后,该温度传感器的最大温度误差小于1℃。展开更多
由于芯片集成度的提高,改善电路性能的同时也导致功率密度增加。为了防止芯片过热,保证芯片可靠、稳定的工作,设计了一款基于电流比较的新型过温保护电路。电路通过产生与绝对温度(正/负温度系数PTAT/CTAT)相关的电流并进行电流比较,输...由于芯片集成度的提高,改善电路性能的同时也导致功率密度增加。为了防止芯片过热,保证芯片可靠、稳定的工作,设计了一款基于电流比较的新型过温保护电路。电路通过产生与绝对温度(正/负温度系数PTAT/CTAT)相关的电流并进行电流比较,输出包含温度信息的逻辑控制信号,实现对芯片工作状态的控制。对电路的工作原理进行了详细的分析和推导,并给出了电路中核心器件的参数设置。基于UMC 0.6μm Bi CMOS工艺进行了流片并对电路进行了测量,热关断、开启温度分别为125℃和114℃,具有11℃的温度滞回量;转换速率26.2 V/℃,具有高灵敏度、高精度的特点;当供电电压发生变化时,电路性能稳定,具有较好的应用前景。展开更多
文摘综述了近几年微波、毫米波氮化镓高电子迁移率晶体管(Ga N HEMT)与单片微波集成电路(MMIC)在高效率、宽频带、高功率和先进热管理等方面的应用创新进展。介绍了基于Ga N HEMT器件所具有的高功率密度和高击穿电压,采用波形工程原理设计的各类开关模式的高效率功率放大器,以及基于Ga N HEMT器件的高功率密度、高阻抗的特点与先进的宽带拓扑电路和功率合成技术相结合的宽频带和高功率放大器。详细介绍了微波高端和毫米波段的高效率、宽频带和高功率放大器,多功能电路和多功能集成的Ga N MMIC。最后阐述了由于Ga N HEMT的功率密度是其他半导体器件的数倍,其先进热管理的创新研究也成为热点。
文摘为了精确测量芯片内的温度分布,提出了一个低功耗、小尺寸的温度传感器。该传感器使用一个输出电流与绝对温度成比例(PTAT)的电流发生器检测环境温度,然后使用一个源耦合流控振荡器将PTAT电流转换成频率输出。所提出的电路采用22 nm SOI CMOS工艺设计并制造,其有源区域占用的片上面积为0.01 mm 2,电源电压为0.8 V。测量结果表明,所提出的架构能够在-40^+85℃的温度范围内工作。工作于+85℃时,温度传感器的功耗达到最大值,为500 nW。使用单点校准后,该温度传感器的最大温度误差小于1℃。
文摘由于芯片集成度的提高,改善电路性能的同时也导致功率密度增加。为了防止芯片过热,保证芯片可靠、稳定的工作,设计了一款基于电流比较的新型过温保护电路。电路通过产生与绝对温度(正/负温度系数PTAT/CTAT)相关的电流并进行电流比较,输出包含温度信息的逻辑控制信号,实现对芯片工作状态的控制。对电路的工作原理进行了详细的分析和推导,并给出了电路中核心器件的参数设置。基于UMC 0.6μm Bi CMOS工艺进行了流片并对电路进行了测量,热关断、开启温度分别为125℃和114℃,具有11℃的温度滞回量;转换速率26.2 V/℃,具有高灵敏度、高精度的特点;当供电电压发生变化时,电路性能稳定,具有较好的应用前景。