期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
1
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
在线阅读 下载PDF
基于ICA优化空间信息PCM的SAR图像分割 被引量:4
2
作者 田小林 焦李成 缑水平 《电子与信息学报》 EI CSCD 北大核心 2008年第7期1751-1755,共5页
可能性C-均值(PCM)聚类算法提高了数据聚类的抗噪性能,但由于这种算法没有考虑数据的空间依赖特性,应用于合成孔径雷达(SAR)图像分割时,受SAR图像中斑点噪声的影响,通常不能得到正确的分割结果。该文在PCM目标函数中引入空间相对位置信... 可能性C-均值(PCM)聚类算法提高了数据聚类的抗噪性能,但由于这种算法没有考虑数据的空间依赖特性,应用于合成孔径雷达(SAR)图像分割时,受SAR图像中斑点噪声的影响,通常不能得到正确的分割结果。该文在PCM目标函数中引入空间相对位置信息和多尺度空间像素强度信息,这些空间信息取值由前次迭代优化的聚类结果确定,空间信息影响程度(影响因子)由免疫克隆算法(ICA)优化,实现了空间信息影响因子的自适应调整,优化了PCM聚类结果。实验将这种算法应用于人工合成图像和实际SAR图像的分割,结果表明该文所提出的算法对初始分割不敏感,具有强的抗噪性能,改善了SAR图像的分割效果。 展开更多
关键词 SAR图像分割 pcm聚类 平稳小波变换(SWT) 免疫克隆算法(ICA)
在线阅读 下载PDF
一种基于SOM改进的PCM聚类方法
3
作者 兰雁宁 郑陈达 《科技创新与应用》 2022年第3期133-135,共3页
针对PCM算法在聚类计算过程中存在的初始聚类中心随机选取,聚类结果可能陷入局部最优解等问题,提出一种改进策略。利用SOM网络对数据进行初步处理,得到PCM算法的初始聚类中心,使得算法聚类效果得到明显提升。
关键词 可能性c均值聚类 自组织映射 聚类
在线阅读 下载PDF
基于半监督信息的截集式可能性C-均值聚类算法 被引量:4
4
作者 范九伦 高梦飞 +1 位作者 于海燕 陈斌斌 《电子与信息学报》 EI CSCD 北大核心 2021年第8期2378-2385,共8页
截集式可能性C-均值(C-PCM)聚类算法将截集概念引入可能性C-均值(PCM)聚类算法中,明显改善了PCM的聚类中心重合问题,并能够对噪声和奇异点的数据进行有效聚类,但该聚类算法对小目标数据聚类时仍然存在聚类中心偏移的问题。针对此问题,... 截集式可能性C-均值(C-PCM)聚类算法将截集概念引入可能性C-均值(PCM)聚类算法中,明显改善了PCM的聚类中心重合问题,并能够对噪声和奇异点的数据进行有效聚类,但该聚类算法对小目标数据聚类时仍然存在聚类中心偏移的问题。针对此问题,该文将半监督学习机制引入C-PCM的目标函数中,通过部分先验信息来指导聚类过程,提出半监督截集式可能性C-均值(SS-C-PCM)聚类算法。为了提高彩色图像的分割效率和分割准确率,将差分进化超像素(DES)算法获得的图像空间邻域信息融入SS-C-PCM目标函数中,并利用彩色直方图重构目标函数,以降低算法的计算复杂度,进而提出基于差分进化超像素的半监督截集式可能性C-均值(desSSC-PCM)聚类算法。通过人造数据和彩色图像分割的仿真并与多种相关算法进行对比,表明该文算法能够有效改善小目标数据的聚类效果,提高算法的执行效率。 展开更多
关键词 截集式可能性C-均值聚类 半监督 超像素 彩色直方图
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部