期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stabilization of nickel nanoparticle suspensions with the aid of polymer and surfactant: static bottle tests and dynamic micromodel flow tests 被引量:1
1
作者 Siyuan Yi Tayfun Babadagli Huazhou Li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1014-1024,共11页
Nickel nanoparticles can work as catalyst for the aquathermolysis reactions between water and heavy oil.A homogeneous and stable suspension is needed to carry the nickel nanoparticles into deeper reservoirs.This study... Nickel nanoparticles can work as catalyst for the aquathermolysis reactions between water and heavy oil.A homogeneous and stable suspension is needed to carry the nickel nanoparticles into deeper reservoirs.This study conducts a detailed investigation on how to achieve stabilized nickel nanoparticle suspensions with the use of surfactant and polymer.To stabilize the nickel nanoparticle suspension,three surfactants including sodium dodecyl sulfate,cationic surfactant cetyltrimethylammonium bromide and polyoxyalkalene amine derivative(Hypermer) along with xanthan gum polymer were introduced into the nickel nanoparticle suspension.Static stability tests and zeta potential measurements were conducted to determine the polymer/surfactant recipes yielding the most stable nickel nanoparticle suspensions.Dynamic micromodel flow tests were also conducted on three suspensions to reveal how the nickel nanoparticles would travel and distribute in porous media.Test results showed that when the injection was initiated,most nickel nanoparticles were able to pass through the gaps between the sand grains and produced in the outlet of the micromodel;only a small number of the nickel nanoparticles were attached to the grain surface.A higher nickel concentration in the suspension may lead to agglomeration of nickel nanoparticles in porous media,while a lower concentration can mitigate this agglomeration.Moreover,clusters tended to form when the nickel nanoparticle suspension carried an electrical charge opposite to that of the porous media.Follow-up waterflood was initiated after the nanofluid injection.It was found that the waterflood could not flush away the nanoparticles that were remaining in the micromodel. 展开更多
关键词 Aquathermolysis reactions Nickel nanoparticles Polymer surfactant Suspension stability
在线阅读 下载PDF
Effects of pore structure on surfactant/polymer floodingbased enhanced oil recovery in conglomerate reservoirs 被引量:2
2
作者 LIU Zheyu LI Yiqiang +3 位作者 LENG Runxi LIU Zhenping CHEN Xin HEJAZI Hossein 《Petroleum Exploration and Development》 2020年第1期134-145,共12页
To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil r... To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations. 展开更多
关键词 CONGLOMERATE RESERVOIR PORE structure surfactant/polymer FLOODING DISPLACEMENT effect oil recovery enhancement
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部