The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How...The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.展开更多
Imaging detection is an important means to obtain target information.The traditional imaging detection technology mainly collects the intensity information and spectral information of the target to realize the classif...Imaging detection is an important means to obtain target information.The traditional imaging detection technology mainly collects the intensity information and spectral information of the target to realize the classification of the target.In practical applications,due to the mixed scenario,it is difficult to meet the needs of target recognition.Compared with intensity detection,the method of polarization detection can effectively enhance the accuracy of ground object target recognition(such as the camouflage target).In this paper,the reflection mechanism of the target surface is studied from the microscopic point of view,and the polarization characteristic model is established to express the relationship between the polarization state of the reflected signal and the target surface parameters.The polarization characteristic test experiment is carried out,and the target surface parameters are retrieved using the experimental data.The results show that the degree of polarization(DOP)is closely related to the detection zenith angle and azimuth angle.The(DOP)of the target is the smallest in the direction of light source incidence and the largest in the direction of specular reflection.Different materials have different polarization characteristics.By comparing their DOP,target classification can be achieved.展开更多
This article introduces a method of achieving high polarization extinction ratio using a subwavelength grating structure on a lithium niobate thin film platform,and the chip is formed on the surface of the lithium nio...This article introduces a method of achieving high polarization extinction ratio using a subwavelength grating structure on a lithium niobate thin film platform,and the chip is formed on the surface of the lithium niobate thin film.The chip,with a length of just 20μm,achieved a measured polarization extinction ratio of 29 dB at 1550 nm wavelength.This progress not only proves the possibility of achieving a high extinction ratio on a lithium niobate thin film platform,but also offers important technical references for future work on polarization beam splitters,integrated fiber optic gyroscopes,and so on.展开更多
Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in tw...Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in two orthogonal polarization channels. Firstly, signal model and signal process are advanced under narrowband condition. Secondly, measurement performances of two typical IPR waveforms are analyzed in detail. At last, field experiments are carried out using X-band IPR system designed by National University of Defense Technology (NUDT), China. Compared with results obtained by alternative polarization measurement scheme, following results can be obtained: the difference of relative amplitude measurement results is smaller than 2 dB and that of relative phase measurement results is smaller than 10?, verifying the validity of instantaneous polarization measurement scheme.展开更多
Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realizati...Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realization very difficult. Also the predict method of the necessary parameters is not explained in most papers, which makes the polarization filter realization impossible. A novel modi- fied interference suppression (MIS) polarization filter is proposed, which resolves these problems by a new polarization designed strategy. The computation of this polarization filter is easy in most conditions, and the necessary parameters estimation method in real time is introduced, which makes polarization filter design possible.展开更多
A novel polarimetric calibration method for new target property measurement radar system is presented. Its applica- tion in the real radar system is also discussed. The analysis indicates that instantaneous polarizati...A novel polarimetric calibration method for new target property measurement radar system is presented. Its applica- tion in the real radar system is also discussed. The analysis indicates that instantaneous polarization radar ([PR) has inherent cross-polarization measurement error. The proposed method can effectively eliminate this error, and thus enhance the polarization scattering matrix (PSM) measurement precision. The phase error caused by digital receiver's direct IF sampling and mixing of two orthogonal polarization channels can be removed. Consequently, the inherent error of target polarization scattering measurement of the instantaneous polarization radar system is well revised. It has good reference value for further ploarimetric calibration and high practical application prospect.展开更多
Solid particles in Earth’s atmosphere,such as polystyrene beads,are an important factor affecting the processes of absorption and scattering of light in the atmosphere.These processes affect on the solar energy trans...Solid particles in Earth’s atmosphere,such as polystyrene beads,are an important factor affecting the processes of absorption and scattering of light in the atmosphere.These processes affect on the solar energy transfer in the Earth’s atmosphere,consequently they have influence on the regional and global climate changes and atmospheric visibility.In particular,great interest to study the scattering properties of small particles compared with wavelength,because of such particles experience low gravitational settlement and may have long time of life in the atmosphere.When scattering particle is much smaller than the wavelength of the scattered or absorbed light,this is the case of Rayleigh scattering.Scattering properties of these particles(such as intensity and the degree of linear polarization)at the Rayleigh scattering are simply derived from electromagnetic Maxwell’s equations.But when the particles are large enough to be comparable with the wavelength,the deviations from Rayleigh scattering law are observed.One of the clear manifestations of such deviations is the recently discovered quasi-Rayleigh polarization leap of monodisperse spherical particles.This quasi-Rayleigh polarization leap allows remote sensing of the sizes of distant particles,based on the spectral position of quasi-Rayleigh polarization leap at different phase angles of observation.In this paper,we studied the effect of the non-sphericity of a scattering polystyrene particle on the magnitude and position of the quasi-Rayleigh polarization leap.It is established that the non-sphericity shifts the position of the quasi-Rayleigh polarization leap shorter wavelengths.It is shown that for non-sphericity of particles makes the quasi-Rayleigh polarization leap becomes less pronounced.Moreover,it was found,that increasing of the phase angle and degree of non-sphericity shift the quasi-Rayleigh polarization leap position to shorter wavelength.However,in the case of not very elongated particles,the quasi-Rayleigh polarization leap is quite well manifested.Therefore,this method is suitable for remote sensing not only the size,but also the degree of non-sphericity of the scattering particles.A simple formula has been obtained for polystyrene beads that relates the degree of non-sphericity of a particle with the wavelength and phase angles at which the quasi-Rayleigh polarization leap is observed.展开更多
OBJECTIVE Neuroinflammation is considered to be an important and inevitable pathological process associated with all types of damages to the central nervous system.The hallmark of neuroinflammation is the microglia ac...OBJECTIVE Neuroinflammation is considered to be an important and inevitable pathological process associated with all types of damages to the central nervous system.The hallmark of neuroinflammation is the microglia activation.In response to different micro-environmental disturbances,microglia could polarize into either an M1 pro-inflammatory phenotype,exacerbating neurotoxicity,or an M2 anti-inflammatory phenotype,exerting neuroprotection.Therefore,shifting the polarization of microglia toward the M2 phenotype could possess a more viable strategy for the neuroinflammatory disorders treatment.Naringenin(NAR) is natural y a grapefruit flavonoid and possesses various kinds of pharmacological activities,such as anti-inflammatory and neuroprotective activities.In the present study,we aimed to investigate the potential effects of NAR on microglial M1/M2 polarization and further reveal the underlying mechanisms of actions.METHODS BV-2 cells were pretreated with NAR(100 μmol·L^(-1)) for 1 h and then incubated with LPS(1 mg·L^(-1)) for 24 h.The effects of NAR on LPS-induced microglia activation,microglial M1/M2 polarization and MAPK pathways were detected.In addition,BV-2 cells were incubated with or without anisomycin(ANI,a selective agonist of JNK) to evaluate the role of JNK on microglia activation and microglia M1/M2 polarization.RESULTS First,NAR inhibited LPS-induced microglial activation.Then,NAR shifted the M1 pro-inflammatory microglia phenotype to the M2 anti-inflammatory M2 microglia state as demonstrated by the decreased expression of M1 markers,ie,inducible tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β)and the elevated expression of M2 markers(ie,arginase 1,IL-4 and IL-10).In addition,the effects of NAR on microglial polarization was dependent on MAPK signaling,particularly JNK inactivation,as evidenced by the fact that the selective activator of JNK abolished NAR-promoted M2 polarization and further NAR-inhibited microglial activation.CONCLUSION NAR promotes microglia M1/M2 polarization,thus conferring anti-neuroinflammatory effects via the inhibition of MAPK signaling activation.These findings might provide new alternative avenues for neuroinflammation-related disorders treatment.展开更多
A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-G...A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.展开更多
This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted...This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted beam with spatially varying polarization is produced, such that the polarization of the transmitted radar wave varies in azimuth or elevation. Thus, the phases of the signals received on the two antennas of a cross-eye jammer become unequal, and an additional phase difference is introduced to disrupt the 180? phase shifting in the retrodirective loop of the jammer. By means of beam scanning in a small angular range,the optimal beam steering configuration can be found to maximize the phase error for the mitigation of cross-eye jamming. As a result, the jamming performance of the cross-eye jammer degrades largely. Theoretical analysis and simulation results indicate that the proposed method is valid and feasible.展开更多
The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it wi...The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.展开更多
The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), f...The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops,the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transformation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array,then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has advantages of lower calculation complexity and no parameter matching. The experiment results verify the effectiveness and feasibility of the presented algorithm.展开更多
A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Comp...A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Compared to pure TiO_(2),pure BaTiO_(3) and BaTiO_(3)/TiO_(2) physical mixture,the heterostructured BaTiO_(3)@TiO_(2) exhibits significantly improved photocatalytic activity and cycling stability in decomposing Rhodamine B(RhB)and the degradation efficiency is 1.7 times higher than pure TiO_(2) and 7.2 times higher than pure BaTiO_(3).These results are mainly attributed to the synergy effect of photoelectric TiO_(2),ferroelectric-BaTiO_(3) and the rationally designed interfacial structure.The mesoporous microstructure of TiO_(2) is of a high specific area and enables excellent photocatalytic activity.The ferroelectric polarization induced built-in electric field in BaTiO_(3) nanoparticles,and the intimate interfacial interactions at the interface of BaTiO_(3) and TiO_(2) are effective in driving the separation and transport of photogenerated charge carriers.This strategy will stimulate the design of heterostructured photocatalysts with outstanding photocatalytic performance via interface engineering.展开更多
A jamming suppression method based on polarization signal detection is proposed under common range and velocity cheating jammingfor pulse Doppler radar. On the basis of the separation of the target and the jamming, th...A jamming suppression method based on polarization signal detection is proposed under common range and velocity cheating jammingfor pulse Doppler radar. On the basis of the separation of the target and the jamming, the range and velocity track on the true target are realized. Firstly the signal processing model of the full polarization pulse Doppler radar is introduced. Secondly the method of correct target separation is discussed, which is the twice detections of energy and polarization state on the two dimension resolution cells of range and velocity of the radar echo. Finally the simulations are performed and the results prove the validity. What's more, multiple range and velocity cheating jamming can be suppressed at the same time if the target and the jamming are different in the polarization domain.展开更多
In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt...In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt%sodium chloride solution through slow strain rate testing(SSRT)and electrochemical testing.X-ray diffraction(XRD)and scanning electron microscopy(SEM)methods were also applied to investigating corrosion behavior and fracture morphology.The results showed that under open circuit,stress corrosion cracking(SCC)of AA7003 might by classified as anodic dissolution.In this case,the extent of SCC susceptibility(ISCC)of AA7003 alloy with different aging treatments was as follows:ISCC(PA)>ISCC(DPA)>ISCC(RRA).On the other hand,stress corrosion cracking(SCC)of AA7003 under cathodic polarization might be classified as hydrogen embrittlement(HE)which had been proved in this paper by presence of AlH3 diffraction peak in XRD patterns.In this case,for AA7003 with any of the three aging treatments,hydrogen embrittlement susceptibility(IHE)increases with negatively shifting of cathodic polarization.展开更多
A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ...A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.展开更多
The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But th...The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.展开更多
In the modern wireless communication system,the manipulation for polarization of electromagnetic wave plays a important role in improving the capacity and reliability of communication.In this paper,a multifunctional p...In the modern wireless communication system,the manipulation for polarization of electromagnetic wave plays a important role in improving the capacity and reliability of communication.In this paper,a multifunctional polarization converter(MFPC)based on the multilayer reconfigurable metasurface is proposed,which can assist the source antenna to transmit and receive multiple polarization signals.The MFPC consists of a grating which can filter out the undesired polarization and four layers of metasurfaces incorporated with PIN diodes.The functions of the MFPC include LTC and LTL polarization conversions,co-polarization transmission and reflection for arbitrary polarization.By changing the states of PIN diodes,the functions of MFPC can be dynamically switched.Loaded on the aperture of source antenna,the proposed MFPC can serve as a transmissive array with multiple polarization channels,and can also provide EM protection for source antenna by reflecting the incoming interference waves.Cascading of the metasurfaces produces Fabry-Perot resonance in the MFPC,and it contributes to the realization of LTC and LTL polarization conversions.To verify the performance of the proposed MFPC,the prototype is fabricated and tested.The measured results show that the fractional bandwidths of four functions are all higher than 31.9% with transmission or reflection coefficients higher than-2 d B.The frequency band of each function is mainly concentrated in S-band.The measured data are in agreement with the simulated results.展开更多
In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised....In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised.Firstly,according to the special structure of the sparse nonuniform rectangular array(SNRA),a set of accurate but ambiguous direction-cosine estimates can be obtained.Then the steering vector of spatially spread electromagnetic vector sensor(SSEMVS)can be extracted from the array manifold to obtain the coarse but unambiguous direction-cosine estimates.Finally,the disambiguation approach can be used to get the final accurate estimates of 2DDOA and polarization.Compared with some existing methods,the SNRA configuration extends the spatial aperture and refines the parameters estimation accuracy without adding any redundant antennas,as well as reduces the mutual coupling effect.Moreover,the proposed algorithm resolves multiple sources without the priori knowledge of signal information,suffers no ambiguity in the estimation of the Poynting vector,and pairs the x-axis direction cosine with the y-axis direction cosine automatically.Simulation results are given to verify the effectiveness and superiority of the proposed algorithm.展开更多
基金Supported by the National Key Research and Development Program of China(2022YFA1404602)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)+3 种基金the National Natural Science Foundation of China(U23B2045,62305362)the Program of Shanghai Academic/Technology Research Leader(22XD1424400)the Fund of SITP Innovation Foundation(CX-461 and CX-522)Special Project to Seize the Commanding Heights of Science and Technology of Chinese Academy of Sciences,subtopic(GJ0090406-6).
文摘The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.
基金supported by the National Key Laboratory of Electromagnetic Space Security(JCKY2023230C009).
文摘Imaging detection is an important means to obtain target information.The traditional imaging detection technology mainly collects the intensity information and spectral information of the target to realize the classification of the target.In practical applications,due to the mixed scenario,it is difficult to meet the needs of target recognition.Compared with intensity detection,the method of polarization detection can effectively enhance the accuracy of ground object target recognition(such as the camouflage target).In this paper,the reflection mechanism of the target surface is studied from the microscopic point of view,and the polarization characteristic model is established to express the relationship between the polarization state of the reflected signal and the target surface parameters.The polarization characteristic test experiment is carried out,and the target surface parameters are retrieved using the experimental data.The results show that the degree of polarization(DOP)is closely related to the detection zenith angle and azimuth angle.The(DOP)of the target is the smallest in the direction of light source incidence and the largest in the direction of specular reflection.Different materials have different polarization characteristics.By comparing their DOP,target classification can be achieved.
基金Supported by Beijing Natural Science Foundation(4242062)and the Youth Innovation Promotion Association,CAS(2021108)。
文摘This article introduces a method of achieving high polarization extinction ratio using a subwavelength grating structure on a lithium niobate thin film platform,and the chip is formed on the surface of the lithium niobate thin film.The chip,with a length of just 20μm,achieved a measured polarization extinction ratio of 29 dB at 1550 nm wavelength.This progress not only proves the possibility of achieving a high extinction ratio on a lithium niobate thin film platform,but also offers important technical references for future work on polarization beam splitters,integrated fiber optic gyroscopes,and so on.
基金supported by the National Natural Science Foundationof China (60736006 60802078)
文摘Adopting "simultaneous transmitting, simultaneous receiving" operational scheme, instantaneous polarization radar (IPR) can measure target polarization scattering matrix (PSM) using only once target echoes in two orthogonal polarization channels. Firstly, signal model and signal process are advanced under narrowband condition. Secondly, measurement performances of two typical IPR waveforms are analyzed in detail. At last, field experiments are carried out using X-band IPR system designed by National University of Defense Technology (NUDT), China. Compared with results obtained by alternative polarization measurement scheme, following results can be obtained: the difference of relative amplitude measurement results is smaller than 2 dB and that of relative phase measurement results is smaller than 10?, verifying the validity of instantaneous polarization measurement scheme.
基金supported by the National Natural Science Foundation of China (60736001)
文摘Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realization very difficult. Also the predict method of the necessary parameters is not explained in most papers, which makes the polarization filter realization impossible. A novel modi- fied interference suppression (MIS) polarization filter is proposed, which resolves these problems by a new polarization designed strategy. The computation of this polarization filter is easy in most conditions, and the necessary parameters estimation method in real time is introduced, which makes polarization filter design possible.
基金supported by the National Natural Science Priority Foundation of China(60736006)National Natural Science Foundation of China for Youth(60802078)+1 种基金National Basic Research Program(973 Program)(51314)Hunan Provincial Innovation Foundation for Postgraduate
文摘A novel polarimetric calibration method for new target property measurement radar system is presented. Its applica- tion in the real radar system is also discussed. The analysis indicates that instantaneous polarization radar ([PR) has inherent cross-polarization measurement error. The proposed method can effectively eliminate this error, and thus enhance the polarization scattering matrix (PSM) measurement precision. The phase error caused by digital receiver's direct IF sampling and mixing of two orthogonal polarization channels can be removed. Consequently, the inherent error of target polarization scattering measurement of the instantaneous polarization radar system is well revised. It has good reference value for further ploarimetric calibration and high practical application prospect.
文摘Solid particles in Earth’s atmosphere,such as polystyrene beads,are an important factor affecting the processes of absorption and scattering of light in the atmosphere.These processes affect on the solar energy transfer in the Earth’s atmosphere,consequently they have influence on the regional and global climate changes and atmospheric visibility.In particular,great interest to study the scattering properties of small particles compared with wavelength,because of such particles experience low gravitational settlement and may have long time of life in the atmosphere.When scattering particle is much smaller than the wavelength of the scattered or absorbed light,this is the case of Rayleigh scattering.Scattering properties of these particles(such as intensity and the degree of linear polarization)at the Rayleigh scattering are simply derived from electromagnetic Maxwell’s equations.But when the particles are large enough to be comparable with the wavelength,the deviations from Rayleigh scattering law are observed.One of the clear manifestations of such deviations is the recently discovered quasi-Rayleigh polarization leap of monodisperse spherical particles.This quasi-Rayleigh polarization leap allows remote sensing of the sizes of distant particles,based on the spectral position of quasi-Rayleigh polarization leap at different phase angles of observation.In this paper,we studied the effect of the non-sphericity of a scattering polystyrene particle on the magnitude and position of the quasi-Rayleigh polarization leap.It is established that the non-sphericity shifts the position of the quasi-Rayleigh polarization leap shorter wavelengths.It is shown that for non-sphericity of particles makes the quasi-Rayleigh polarization leap becomes less pronounced.Moreover,it was found,that increasing of the phase angle and degree of non-sphericity shift the quasi-Rayleigh polarization leap position to shorter wavelength.However,in the case of not very elongated particles,the quasi-Rayleigh polarization leap is quite well manifested.Therefore,this method is suitable for remote sensing not only the size,but also the degree of non-sphericity of the scattering particles.A simple formula has been obtained for polystyrene beads that relates the degree of non-sphericity of a particle with the wavelength and phase angles at which the quasi-Rayleigh polarization leap is observed.
基金National Natural Science Foundation of China(8146055681760658)+2 种基金Foundation for High-level Innovative Talents of Guizhou Province(20164027)Innovation Research Group Projectof Education Department of Guizhou Province(2016038)Foundation for ExcellentYoung
文摘OBJECTIVE Neuroinflammation is considered to be an important and inevitable pathological process associated with all types of damages to the central nervous system.The hallmark of neuroinflammation is the microglia activation.In response to different micro-environmental disturbances,microglia could polarize into either an M1 pro-inflammatory phenotype,exacerbating neurotoxicity,or an M2 anti-inflammatory phenotype,exerting neuroprotection.Therefore,shifting the polarization of microglia toward the M2 phenotype could possess a more viable strategy for the neuroinflammatory disorders treatment.Naringenin(NAR) is natural y a grapefruit flavonoid and possesses various kinds of pharmacological activities,such as anti-inflammatory and neuroprotective activities.In the present study,we aimed to investigate the potential effects of NAR on microglial M1/M2 polarization and further reveal the underlying mechanisms of actions.METHODS BV-2 cells were pretreated with NAR(100 μmol·L^(-1)) for 1 h and then incubated with LPS(1 mg·L^(-1)) for 24 h.The effects of NAR on LPS-induced microglia activation,microglial M1/M2 polarization and MAPK pathways were detected.In addition,BV-2 cells were incubated with or without anisomycin(ANI,a selective agonist of JNK) to evaluate the role of JNK on microglia activation and microglia M1/M2 polarization.RESULTS First,NAR inhibited LPS-induced microglial activation.Then,NAR shifted the M1 pro-inflammatory microglia phenotype to the M2 anti-inflammatory M2 microglia state as demonstrated by the decreased expression of M1 markers,ie,inducible tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β)and the elevated expression of M2 markers(ie,arginase 1,IL-4 and IL-10).In addition,the effects of NAR on microglial polarization was dependent on MAPK signaling,particularly JNK inactivation,as evidenced by the fact that the selective activator of JNK abolished NAR-promoted M2 polarization and further NAR-inhibited microglial activation.CONCLUSION NAR promotes microglia M1/M2 polarization,thus conferring anti-neuroinflammatory effects via the inhibition of MAPK signaling activation.These findings might provide new alternative avenues for neuroinflammation-related disorders treatment.
基金This project was supported by the Graduate Innovation Laboratory of Jilin University(502039)Jilin Science Committee of China(20030519)+1 种基金the National Natural Science Foundation of China (69872012)the Foundation of Nanjing Institute of Technology.
文摘A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.
基金supported by the National Natural Science Foundation of China(6149069261401488)
文摘This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted beam with spatially varying polarization is produced, such that the polarization of the transmitted radar wave varies in azimuth or elevation. Thus, the phases of the signals received on the two antennas of a cross-eye jammer become unequal, and an additional phase difference is introduced to disrupt the 180? phase shifting in the retrodirective loop of the jammer. By means of beam scanning in a small angular range,the optimal beam steering configuration can be found to maximize the phase error for the mitigation of cross-eye jamming. As a result, the jamming performance of the cross-eye jammer degrades largely. Theoretical analysis and simulation results indicate that the proposed method is valid and feasible.
基金supported by the National Natural Science Foundation of China(6190149661871385)。
文摘The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.
基金supported by the National Natural Science Foundation of China(6120129561231017)the Fundamental Research Funds for the Central Universities(K5051307017)
文摘The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops,the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transformation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array,then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has advantages of lower calculation complexity and no parameter matching. The experiment results verify the effectiveness and feasibility of the presented algorithm.
基金Project(cstc2020jcyj-msxm X0930) supported by the Natural Science Foundation of Chongqing,ChinaProject(KJQN201901522) supported by Technological Research Program of Chongqing Municipal Education Commission,ChinaProject(cx2020068) supported by the Venture&Innovation Support Program for Chongqing Overseas Returnees,China。
文摘A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Compared to pure TiO_(2),pure BaTiO_(3) and BaTiO_(3)/TiO_(2) physical mixture,the heterostructured BaTiO_(3)@TiO_(2) exhibits significantly improved photocatalytic activity and cycling stability in decomposing Rhodamine B(RhB)and the degradation efficiency is 1.7 times higher than pure TiO_(2) and 7.2 times higher than pure BaTiO_(3).These results are mainly attributed to the synergy effect of photoelectric TiO_(2),ferroelectric-BaTiO_(3) and the rationally designed interfacial structure.The mesoporous microstructure of TiO_(2) is of a high specific area and enables excellent photocatalytic activity.The ferroelectric polarization induced built-in electric field in BaTiO_(3) nanoparticles,and the intimate interfacial interactions at the interface of BaTiO_(3) and TiO_(2) are effective in driving the separation and transport of photogenerated charge carriers.This strategy will stimulate the design of heterostructured photocatalysts with outstanding photocatalytic performance via interface engineering.
文摘A jamming suppression method based on polarization signal detection is proposed under common range and velocity cheating jammingfor pulse Doppler radar. On the basis of the separation of the target and the jamming, the range and velocity track on the true target are realized. Firstly the signal processing model of the full polarization pulse Doppler radar is introduced. Secondly the method of correct target separation is discussed, which is the twice detections of energy and polarization state on the two dimension resolution cells of range and velocity of the radar echo. Finally the simulations are performed and the results prove the validity. What's more, multiple range and velocity cheating jamming can be suppressed at the same time if the target and the jamming are different in the polarization domain.
基金Projects(51371039,51871031)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt%sodium chloride solution through slow strain rate testing(SSRT)and electrochemical testing.X-ray diffraction(XRD)and scanning electron microscopy(SEM)methods were also applied to investigating corrosion behavior and fracture morphology.The results showed that under open circuit,stress corrosion cracking(SCC)of AA7003 might by classified as anodic dissolution.In this case,the extent of SCC susceptibility(ISCC)of AA7003 alloy with different aging treatments was as follows:ISCC(PA)>ISCC(DPA)>ISCC(RRA).On the other hand,stress corrosion cracking(SCC)of AA7003 under cathodic polarization might be classified as hydrogen embrittlement(HE)which had been proved in this paper by presence of AlH3 diffraction peak in XRD patterns.In this case,for AA7003 with any of the three aging treatments,hydrogen embrittlement susceptibility(IHE)increases with negatively shifting of cathodic polarization.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0645)
文摘A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.
文摘The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.
基金supported in part by the Joint Funds of the National Natural Science Foundation of China(G02)(Grant No.U1834203)in part by of the Science and Technology Department of Sichuan Province(S01)(Grant No.2020JDTD0009)。
文摘In the modern wireless communication system,the manipulation for polarization of electromagnetic wave plays a important role in improving the capacity and reliability of communication.In this paper,a multifunctional polarization converter(MFPC)based on the multilayer reconfigurable metasurface is proposed,which can assist the source antenna to transmit and receive multiple polarization signals.The MFPC consists of a grating which can filter out the undesired polarization and four layers of metasurfaces incorporated with PIN diodes.The functions of the MFPC include LTC and LTL polarization conversions,co-polarization transmission and reflection for arbitrary polarization.By changing the states of PIN diodes,the functions of MFPC can be dynamically switched.Loaded on the aperture of source antenna,the proposed MFPC can serve as a transmissive array with multiple polarization channels,and can also provide EM protection for source antenna by reflecting the incoming interference waves.Cascading of the metasurfaces produces Fabry-Perot resonance in the MFPC,and it contributes to the realization of LTC and LTL polarization conversions.To verify the performance of the proposed MFPC,the prototype is fabricated and tested.The measured results show that the fractional bandwidths of four functions are all higher than 31.9% with transmission or reflection coefficients higher than-2 d B.The frequency band of each function is mainly concentrated in S-band.The measured data are in agreement with the simulated results.
基金This work was supported by the innovation project of Science and Technology Commission of the Central Military Commission。
文摘In this paper,a sparse nonuniform rectangular array based on spatially spread electromagnetic vector sensor(SNRASSEMVS)is introduced,and a method for estimating 2D-direction of arrival(DOA)and polarization is devised.Firstly,according to the special structure of the sparse nonuniform rectangular array(SNRA),a set of accurate but ambiguous direction-cosine estimates can be obtained.Then the steering vector of spatially spread electromagnetic vector sensor(SSEMVS)can be extracted from the array manifold to obtain the coarse but unambiguous direction-cosine estimates.Finally,the disambiguation approach can be used to get the final accurate estimates of 2DDOA and polarization.Compared with some existing methods,the SNRA configuration extends the spatial aperture and refines the parameters estimation accuracy without adding any redundant antennas,as well as reduces the mutual coupling effect.Moreover,the proposed algorithm resolves multiple sources without the priori knowledge of signal information,suffers no ambiguity in the estimation of the Poynting vector,and pairs the x-axis direction cosine with the y-axis direction cosine automatically.Simulation results are given to verify the effectiveness and superiority of the proposed algorithm.