The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy w...The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.展开更多
The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the anal...The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved.展开更多
A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hystere...A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hysteresis,which can cause serious displacement errors.Piezoelectric hysteresis is from various origins including movement of defects,grain boundary effects,and displacement of interfaces.Furthermore,because its characteristic is stochastic,it is almost impossible to predict the piezoelectric hysteresis analytically.Therefore,it was predicted phenomenologically,which means that the relationship between inputs and outputs is formulated.The typical phenomenological approach is the Rayleigh model.However,the model has the discrepancy with experiment result as the fields increase.To overcome the demerit of the Rayleigh model,a modified Rayleigh model was proposed.In the modified Rayleigh model,each coefficient should be defined differently according to the field direction due to the increase of the asymmetry in the high fields.By applying an inverse form of this modified Rayleigh model to an AFM scanner,it is proved that hysteresis can be compensated to a position error of less than 5%.This model has the merits of reducing complicated fitting procedures and saving computation time compared with the Preisach model.展开更多
基金Projects(51275198,51422503)supported by the National Natural Science Foundation of ChinaProject(2012YQ030075)supported by Special Funds for Development of National Major Scientific Instruments and Equipments,China+1 种基金Project(NECT-12-0238)supported by Program for New Century Excellent Talents in University,ChinaProject(20150520108JH)supported by Young Scientist Fund of Jilin Province of China
文摘The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.
基金Work(R0A-2007-000-20042-0) partly supported by the Second Stage of Brain Korea 21 Projectspartly by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program funded by the Ministry of Science and Technology of Korea
文摘The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved.
基金Project supported by the Second Stage of Brain Korea 21 ProjectProject supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program Funded by the Ministry of Science and TechnologyProject supported by Changwon National University,Korea
文摘A novel modified Rayleigh model was developed for compensating hysteresis problem of an atomic force microscope(AFM) scanner.In high driving fields,piezoelectric actuators that integrated a scanner have severe hysteresis,which can cause serious displacement errors.Piezoelectric hysteresis is from various origins including movement of defects,grain boundary effects,and displacement of interfaces.Furthermore,because its characteristic is stochastic,it is almost impossible to predict the piezoelectric hysteresis analytically.Therefore,it was predicted phenomenologically,which means that the relationship between inputs and outputs is formulated.The typical phenomenological approach is the Rayleigh model.However,the model has the discrepancy with experiment result as the fields increase.To overcome the demerit of the Rayleigh model,a modified Rayleigh model was proposed.In the modified Rayleigh model,each coefficient should be defined differently according to the field direction due to the increase of the asymmetry in the high fields.By applying an inverse form of this modified Rayleigh model to an AFM scanner,it is proved that hysteresis can be compensated to a position error of less than 5%.This model has the merits of reducing complicated fitting procedures and saving computation time compared with the Preisach model.