The degradation mechanism of dimethyl phthalate(DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DM...The degradation mechanism of dimethyl phthalate(DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet–visible spectroscopy were used in the study. It was found that a high concentration of ozone(O_3) produced by dielectric barrier discharge reactor was up to 74.4 mg l^(-1) within 60 min. Tert-butanol, isopropyl alcohol,carbonate ions(CO_3^(2-)) and bicarbonate ions (HCO_3^-) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals(·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid(PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide(CO_2) and water(H_2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.展开更多
This study investigated the occurrence and distribution of 15 phthalate esters (PAEs) in sediments collected from Qixinghe wetlands, northeast China. Total concentration of PAEs in all sediments ranged from 128.41 to ...This study investigated the occurrence and distribution of 15 phthalate esters (PAEs) in sediments collected from Qixinghe wetlands, northeast China. Total concentration of PAEs in all sediments ranged from 128.41 to 502.79 mu g kg(-1), with the mean value of 284.61 mu g kg(-1). PAEs significantly differed among wetland types; the average PAEs concentration of surface sediments were as follows: Phragmites australis wetland (PAW, 419.87 +/- 73.61 mu g kg(-1)) > Carex lasiocarpa wetland (CLW, 304.18 +/- 56.47 mu g kg(-1)) > Deyeuxia angustifolia wetland (DAW, 129.78 +/- 18.24 mu g kg(-1)). Dimethyl phthalate (DMP), diisobutyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate (DEHP) were found in all sediments, DEHP was the most abundant PAEs congeners with concentrations varying from 37.62 to 294.9 mu g kg(-1). DMP and DEHP exhibited relatively higher concentrations in CLW and PAW wetlands than in DAW, indicating that the different deoxidization and biodegradation conditions could have important implications for the distribution patterns of PAEs in wetland sediments. The variation of PAEs concentrations in horizontal and vertical sediments with wetland types could be attributed to the migration of contaminants by surface water, groundwater and atmospheric deposition. The occurrence and distribution of PAEs in wetlands also suggests that contamination in natural ecosystems should not be overlooked.展开更多
Phthalates and adipate ester in water have been extracted with n-hexane and analyzed by gas chromatography-mass spectrometry(GC-MS).The mean recoveries ranged from 69% to 109% with their RSD range of 1.96%-10.2%.The r...Phthalates and adipate ester in water have been extracted with n-hexane and analyzed by gas chromatography-mass spectrometry(GC-MS).The mean recoveries ranged from 69% to 109% with their RSD range of 1.96%-10.2%.The research results also showed that the method presented simplicity-operating,excellent linearity and reproducibility.展开更多
基金supported by the Science and Technology Support Project Plan and Social Development of Jiangsu Province,China(Grant No.BE2011732)the Science and Technology Support Project Plan and Social Development of Zhenjiang city,China(Grant No.SH2012013)
文摘The degradation mechanism of dimethyl phthalate(DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet–visible spectroscopy were used in the study. It was found that a high concentration of ozone(O_3) produced by dielectric barrier discharge reactor was up to 74.4 mg l^(-1) within 60 min. Tert-butanol, isopropyl alcohol,carbonate ions(CO_3^(2-)) and bicarbonate ions (HCO_3^-) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals(·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid(PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide(CO_2) and water(H_2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.
基金supported by the National Natural Science Foundation of China(No.31470543)
文摘This study investigated the occurrence and distribution of 15 phthalate esters (PAEs) in sediments collected from Qixinghe wetlands, northeast China. Total concentration of PAEs in all sediments ranged from 128.41 to 502.79 mu g kg(-1), with the mean value of 284.61 mu g kg(-1). PAEs significantly differed among wetland types; the average PAEs concentration of surface sediments were as follows: Phragmites australis wetland (PAW, 419.87 +/- 73.61 mu g kg(-1)) > Carex lasiocarpa wetland (CLW, 304.18 +/- 56.47 mu g kg(-1)) > Deyeuxia angustifolia wetland (DAW, 129.78 +/- 18.24 mu g kg(-1)). Dimethyl phthalate (DMP), diisobutyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate (DEHP) were found in all sediments, DEHP was the most abundant PAEs congeners with concentrations varying from 37.62 to 294.9 mu g kg(-1). DMP and DEHP exhibited relatively higher concentrations in CLW and PAW wetlands than in DAW, indicating that the different deoxidization and biodegradation conditions could have important implications for the distribution patterns of PAEs in wetland sediments. The variation of PAEs concentrations in horizontal and vertical sediments with wetland types could be attributed to the migration of contaminants by surface water, groundwater and atmospheric deposition. The occurrence and distribution of PAEs in wetlands also suggests that contamination in natural ecosystems should not be overlooked.
文摘Phthalates and adipate ester in water have been extracted with n-hexane and analyzed by gas chromatography-mass spectrometry(GC-MS).The mean recoveries ranged from 69% to 109% with their RSD range of 1.96%-10.2%.The research results also showed that the method presented simplicity-operating,excellent linearity and reproducibility.