Knowledge of the phase space density distribution in details is useful to understand subsequent evolution of the charged particle beam in a transport line.This makes the beam tomography very useful in the application ...Knowledge of the phase space density distribution in details is useful to understand subsequent evolution of the charged particle beam in a transport line.This makes the beam tomography very useful in the application for beam diagnostics.This application is not limited by the beam energy,as opposed to the emittance scanner.This paper presented the simulations and measurements we undertook in TRIUMF beam-lines to validate the maximum entropy(MENT)technique for the tomographic reconstruction of beam density distribution in the 2-dimensional transverse phase space.Beam profiles were taken with a single wire scanner while changing an upstream quadrupole’s strength.Moreover,the phase space plots were directly measured with emittance scanner.A close comparison was made on the resulting phase space density distribution and the emittance value at the same location of the beam-line.They show good agreement.展开更多
Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the p...Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the parallel cut of perpendicular electric field. Particle-in-cell(PIC) simulations have demonstrated that the electron bi-stream instability induces several electron holes during its nonlinear evolution. However, how the unipolar structure of the parallel cut of the perpendicular electric field formed in these electron holes is still an unsolved problem,especially in a strongly magnetized plasma(Ω_e >ω_(pe), where Ω_e is defined as electron gyrofrequency and ω_(pe) is defined as plasma frequency, respectively). In this paper, with two-dimensional(2D) electrostatic PIC simulations, the evolution of the electron two-stream instability with a finite width in strongly magnetized plasma is investigated. Initially, those conditions lead to monochromatic electrostatic waves, and these waves coalesce with each other during their nonlinear evolution. At last, a solitary electrostatic structure is formed. In such an electron hole, a bipolar structure is formed in the parallel cut. of parallel electric field, while a unipolar structure presents in the parallel cut of perpendicular electric field.展开更多
辐射源系统特有的非线性可用于辐射源指纹识别(radio frequency fingerprinting,RFF)。特别地,基于非线性动力学重构相空间(reconstructed phase space,RPS)的特征对线性信道具有天然优势,且对细微差异更加敏感。然而,该方法在非理想场...辐射源系统特有的非线性可用于辐射源指纹识别(radio frequency fingerprinting,RFF)。特别地,基于非线性动力学重构相空间(reconstructed phase space,RPS)的特征对线性信道具有天然优势,且对细微差异更加敏感。然而,该方法在非理想场景中同样面临着鲁棒性不足的问题。为此,分析非线性动力学基础与其对应的RFF机理,结合实际非理想应用场景完善了相关理论模型;在此基础上,构造相空间K阶状态转移矩阵,提出通过表征K阶状态转移矩阵的特性来提取RFF特征的方法,并通过理论证明其鲁棒性。基于多种实测和仿真数据在随机扰动、多径衰落等场景下进行细致实验,结果表明所提方法特征机理清晰、计算简单,在多种场景下均表现出明显的鲁棒性优势,具有较高的应用价值。展开更多
文摘Knowledge of the phase space density distribution in details is useful to understand subsequent evolution of the charged particle beam in a transport line.This makes the beam tomography very useful in the application for beam diagnostics.This application is not limited by the beam energy,as opposed to the emittance scanner.This paper presented the simulations and measurements we undertook in TRIUMF beam-lines to validate the maximum entropy(MENT)technique for the tomographic reconstruction of beam density distribution in the 2-dimensional transverse phase space.Beam profiles were taken with a single wire scanner while changing an upstream quadrupole’s strength.Moreover,the phase space plots were directly measured with emittance scanner.A close comparison was made on the resulting phase space density distribution and the emittance value at the same location of the beam-line.They show good agreement.
基金Supported by the National Science Foundation of China(41474125,41331067,41421063)973 Program(2013CBA01503)Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-DQC010)
文摘Space satellite observations in an electron phase-space hole(electron hole) have shown that bipolar structures are discovered at the parallel cut of parallel electric field, while unipolar structures spring from the parallel cut of perpendicular electric field. Particle-in-cell(PIC) simulations have demonstrated that the electron bi-stream instability induces several electron holes during its nonlinear evolution. However, how the unipolar structure of the parallel cut of the perpendicular electric field formed in these electron holes is still an unsolved problem,especially in a strongly magnetized plasma(Ω_e >ω_(pe), where Ω_e is defined as electron gyrofrequency and ω_(pe) is defined as plasma frequency, respectively). In this paper, with two-dimensional(2D) electrostatic PIC simulations, the evolution of the electron two-stream instability with a finite width in strongly magnetized plasma is investigated. Initially, those conditions lead to monochromatic electrostatic waves, and these waves coalesce with each other during their nonlinear evolution. At last, a solitary electrostatic structure is formed. In such an electron hole, a bipolar structure is formed in the parallel cut. of parallel electric field, while a unipolar structure presents in the parallel cut of perpendicular electric field.
文摘辐射源系统特有的非线性可用于辐射源指纹识别(radio frequency fingerprinting,RFF)。特别地,基于非线性动力学重构相空间(reconstructed phase space,RPS)的特征对线性信道具有天然优势,且对细微差异更加敏感。然而,该方法在非理想场景中同样面临着鲁棒性不足的问题。为此,分析非线性动力学基础与其对应的RFF机理,结合实际非理想应用场景完善了相关理论模型;在此基础上,构造相空间K阶状态转移矩阵,提出通过表征K阶状态转移矩阵的特性来提取RFF特征的方法,并通过理论证明其鲁棒性。基于多种实测和仿真数据在随机扰动、多径衰落等场景下进行细致实验,结果表明所提方法特征机理清晰、计算简单,在多种场景下均表现出明显的鲁棒性优势,具有较高的应用价值。