Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the pres...Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the presence of a local RF(LO RF)field.In this study,we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation(AM)of the LO RF field;that is,the phase of the SIG RF field is related to both the amplitude and phase of the beat signal.When the AM frequency of the LO RF field is the same as the frequency of the beat signal,the beat signal will further interfere with the AM of the LO RF field inside the atom,and then the amplitude of the beat signal is related to the phase of the SIG RF field.The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 toπ/2 when the phase of the AM is set with a differenceπ/4 from the phase of the LO RF field.The minimum phase resolution can be as small as 0.6°by optimizing the experimental conditions according to a simple theoretical model.This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.展开更多
A real time system used to detect phase difference between two sinusoidal signals is proposed in this paper. The system is designed to process the phase signal of the far-infrared (FIR) hydrogen cyanide (HCN) inte...A real time system used to detect phase difference between two sinusoidal signals is proposed in this paper. The system is designed to process the phase signal of the far-infrared (FIR) hydrogen cyanide (HCN) interferometer on J-TEXT. It is based on zero-crossing detection and makes use of the digital circuit. Compared with a traditional zero-crossing phase detector, it doesn't need to sacrifice the time resolution to expand the phase range. The phase difference is divided into two parts, the integer part and the fraction part. In each detecting cycle, they are detected separately. It outputs digital signals that are more stable for transmission. A prototype was built on J-TEXT using discrete components. A practical method is proposed to deal with the counting error caused by the deviation of electronic components in manufacture. Reasonable results were obtained on the prototype. The phase resolution reaches 2π/64 in test, and can still be improved by raising the clock frequency.展开更多
In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two le...In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two legitimate parties to prepare their signal state with two different non-orthogonal bases instead of single in original protocol. Incorporating this characteristic, we establish the level of security of our protocol under the intercept-resend attack and demonstrate its detector-flaw-immune feature. Furthermore, we show that our scheme not only inherits the merit of better tolerance of bit errors and finite-sized-key effects but can be implemented using hardware similar to the measurement device independent QKD(MDI-QKD). This ensures good compatibility with the current commonly used quantum system.展开更多
On the basis of the Ag-Pd-Gd, Ag-Ru-Gd and Pd-Ru-Gd ternary systems, the partial phase diagram of Pd-Ag-Ru-Gd(Gd<25% atom fraction) quaternary system has been studied by means of X-ray diffraction analysis, diffe...On the basis of the Ag-Pd-Gd, Ag-Ru-Gd and Pd-Ru-Gd ternary systems, the partial phase diagram of Pd-Ag-Ru-Gd(Gd<25% atom fraction) quaternary system has been studied by means of X-ray diffraction analysis, differential thermal analysis, electron probe microanalysis and optical microscopy. The 700℃ isothermal sections of the Ag-Pd-5Ru-Gd, Ag-Pd-20Ru-Gd and Ag-Pd-50Ru-Gd (Gd≤25% atom fraction) phase diagrams were determined respectively. And the 700℃ isothermal section of the Pd-Ag-Ru-Gd (Gd≤25% atom fraction) quaternary system phase diagram was finally inferred. The section consists of four single-phase regions: solid solution Pd(Ag), (Ru), Pd3Gd and Ag 51 Gd 14 ; five two-phase regions: Pd(Ag)+(Ru), Pd(Ag)+ Ag 51 Gd 14 , (Ru)+ Ag 51 Gd 14 , Pd(Ag)+ Pd3Gd and (Ru)+ Pd3Gd; three three-phase regions: Pd(Ag)+ Pd3Gd+(Ru), Pd(Ag)+ Ag 51 Gd 14 +(Ru) and (Ru)+ Ag 51 Gd 14 + Pd3Gd; one four-phase region Pd(Ag)+ (Ru)+ Ag 51 Gd 14 + Pd3Gd. No new quaternary intermetallic phase is found.展开更多
淀积合金薄膜的 Si 片退火时,通过固相反应在界面处生成接触过渡层,其组分与结构均不同于一般条件下生成的硅化物.本文介绍了 Pd 合金/Si接触过渡层的形成工艺,对接触过渡层的结构组分进行了分析与讨论.基于“相分层”效应,可用掺氮或...淀积合金薄膜的 Si 片退火时,通过固相反应在界面处生成接触过渡层,其组分与结构均不同于一般条件下生成的硅化物.本文介绍了 Pd 合金/Si接触过渡层的形成工艺,对接触过渡层的结构组分进行了分析与讨论.基于“相分层”效应,可用掺氮或掺氧的方法提高阻挡层的质量.展开更多
The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The t...The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The testing results for phase control system in 100MeV linac are discussed in detail.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0304900 and 2017YFA0402300)the Beijing Natural Science Foundation(Grant No.1212014)+3 种基金the National Natural Science Foundation of China(Grant Nos.11604334,11604177,and U2031125)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-3)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF201807)the Fundamental Research Funds for the Central Universities,and Youth Innovation Promotion Association CAS.
文摘Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the presence of a local RF(LO RF)field.In this study,we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation(AM)of the LO RF field;that is,the phase of the SIG RF field is related to both the amplitude and phase of the beat signal.When the AM frequency of the LO RF field is the same as the frequency of the beat signal,the beat signal will further interfere with the AM of the LO RF field inside the atom,and then the amplitude of the beat signal is related to the phase of the SIG RF field.The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 toπ/2 when the phase of the AM is set with a differenceπ/4 from the phase of the LO RF field.The minimum phase resolution can be as small as 0.6°by optimizing the experimental conditions according to a simple theoretical model.This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.
基金supported by National Natural Science Foundation of China(Nos.11005043 and 11105056)
文摘A real time system used to detect phase difference between two sinusoidal signals is proposed in this paper. The system is designed to process the phase signal of the far-infrared (FIR) hydrogen cyanide (HCN) interferometer on J-TEXT. It is based on zero-crossing detection and makes use of the digital circuit. Compared with a traditional zero-crossing phase detector, it doesn't need to sacrifice the time resolution to expand the phase range. The phase difference is divided into two parts, the integer part and the fraction part. In each detecting cycle, they are detected separately. It outputs digital signals that are more stable for transmission. A prototype was built on J-TEXT using discrete components. A practical method is proposed to deal with the counting error caused by the deviation of electronic components in manufacture. Reasonable results were obtained on the prototype. The phase resolution reaches 2π/64 in test, and can still be improved by raising the clock frequency.
基金Project supported by the Fund from the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant No.IPOC2017ZT0)
文摘In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two legitimate parties to prepare their signal state with two different non-orthogonal bases instead of single in original protocol. Incorporating this characteristic, we establish the level of security of our protocol under the intercept-resend attack and demonstrate its detector-flaw-immune feature. Furthermore, we show that our scheme not only inherits the merit of better tolerance of bit errors and finite-sized-key effects but can be implemented using hardware similar to the measurement device independent QKD(MDI-QKD). This ensures good compatibility with the current commonly used quantum system.
文摘On the basis of the Ag-Pd-Gd, Ag-Ru-Gd and Pd-Ru-Gd ternary systems, the partial phase diagram of Pd-Ag-Ru-Gd(Gd<25% atom fraction) quaternary system has been studied by means of X-ray diffraction analysis, differential thermal analysis, electron probe microanalysis and optical microscopy. The 700℃ isothermal sections of the Ag-Pd-5Ru-Gd, Ag-Pd-20Ru-Gd and Ag-Pd-50Ru-Gd (Gd≤25% atom fraction) phase diagrams were determined respectively. And the 700℃ isothermal section of the Pd-Ag-Ru-Gd (Gd≤25% atom fraction) quaternary system phase diagram was finally inferred. The section consists of four single-phase regions: solid solution Pd(Ag), (Ru), Pd3Gd and Ag 51 Gd 14 ; five two-phase regions: Pd(Ag)+(Ru), Pd(Ag)+ Ag 51 Gd 14 , (Ru)+ Ag 51 Gd 14 , Pd(Ag)+ Pd3Gd and (Ru)+ Pd3Gd; three three-phase regions: Pd(Ag)+ Pd3Gd+(Ru), Pd(Ag)+ Ag 51 Gd 14 +(Ru) and (Ru)+ Ag 51 Gd 14 + Pd3Gd; one four-phase region Pd(Ag)+ (Ru)+ Ag 51 Gd 14 + Pd3Gd. No new quaternary intermetallic phase is found.
文摘The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The testing results for phase control system in 100MeV linac are discussed in detail.