期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
基于变分模态分解与流形学习的滚动轴承故障特征提取方法 被引量:26
1
作者 戚晓利 叶绪丹 +3 位作者 蔡江林 郑近德 潘紫微 张兴权 《振动与冲击》 EI CSCD 北大核心 2018年第23期133-140,共8页
提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;... 提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;然后,提取有效模态分量的时域指标和小波包频带分解能量所构成的频域指标,两者结合初步提取高维故障特征后,再应用LTSA对故障特征进行二次提取;最后输入到K-means分类器进行故障类型识别;通过对圆柱滚子轴承故障诊断的对比实验分析,发现:(1)与时频特征+LTSA、EMD+LTSA特征提取方法相比,VMD+LTSA方法在分类效果和识别精度上更具优势;(2) LTSA算法相比较于PCA、LPP、LE、ISOMAP和LLE这5种算法,其降维后的特征故障敏感性最好。研究结果表明所提出的方法在圆柱滚子轴承故障诊断方面具有一定的优越性。 展开更多
关键词 变分模态分解 流形学习 局部切空间排列算法 故障诊断 圆柱滚动轴承
在线阅读 下载PDF
一种改进的局部切空间排列算法 被引量:36
2
作者 杨剑 李伏欣 王珏 《软件学报》 EI CSCD 北大核心 2005年第9期1584-1590,共7页
局部切空间排列算法(localtangentspacealignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部... 局部切空间排列算法(localtangentspacealignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部切空间排列算法(partitionallocaltangentspacealignment,简称PLTSA).它建立在VQPCA(vectorquantizationprincipalcomponentanalysis)算法和LTSA算法的基础上,利用X-均值算法把样本空间划分成一些相互有重叠的块,通过把样本点投影到它所在块的局部切空间上得到其局部低维坐标,对局部低维坐标施加平移、旋转、伸缩变换,求出整体低维坐标.PLTSA解决了VQPCA不能求出整体低维坐标和LTSA中大规模矩阵的特征值分解问题,且能够有效处理新来的样本点,这是很多流形学习算法所不能的.通过实验说明了PLTSA的有效性. 展开更多
关键词 维数约简 流形学习 主成分分析 局部主成分分析 局部切空间排列 X-均值
在线阅读 下载PDF
基于改进局部切空间排列的流形学习算法 被引量:9
3
作者 杜春 邹焕新 +2 位作者 孙即祥 周石琳 赵晶晶 《电子与信息学报》 EI CSCD 北大核心 2014年第2期277-284,共8页
局部切空间排列是一种广受关注的流形学习算法,其具备实现简单、全局最优等特点,但其难以有效处理稀疏采样或非均匀分布的高维观测数据。针对这一问题,该文提出一种改进的局部切空间排列算法。首先,提出一种基于L1范数的局部切空间估计... 局部切空间排列是一种广受关注的流形学习算法,其具备实现简单、全局最优等特点,但其难以有效处理稀疏采样或非均匀分布的高维观测数据。针对这一问题,该文提出一种改进的局部切空间排列算法。首先,提出一种基于L1范数的局部切空间估计方法,由于同时考虑了距离和结构因素,该方法得到的切空间较主成分分析方法更为准确。其次,在坐标排列步骤为了减小排列误差,设计了一种基于流形结构的加权坐标排列方案,并给出了具体的求解方法。基于人造数据和真实数据的实验表明,该算法能够有效地处理稀疏和非均匀分布的流形数据。 展开更多
关键词 模式识别 流形学习 降维 局部切空间排列(LTSA) L1范数
在线阅读 下载PDF
局部切空间排列和支持向量机的故障诊断模型 被引量:46
4
作者 万鹏 王红军 徐小力 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第12期2789-2795,共7页
提出了一种非线性流形学习和支持向量机的故障诊断模型。基于机电系统振动信号时域与频域的20个特征参数构建高维特征空间,利用局部切空间排列的非线性流形学习算法提取出隐藏其中的低维流形,网格搜索算法进行维数和邻域点参数的优化,... 提出了一种非线性流形学习和支持向量机的故障诊断模型。基于机电系统振动信号时域与频域的20个特征参数构建高维特征空间,利用局部切空间排列的非线性流形学习算法提取出隐藏其中的低维流形,网格搜索算法进行维数和邻域点参数的优化,实现高维相空间中局部邻域参数的自适应选取,获得机电系统的故障特征。利用K折交叉验证和一对一法构造支持向量机多类故障分类器,采用径向基核函数支持向量机进行机电系统的故障诊断。应用于转子试验台的3种故障状态的识别并与其他故障诊断方法进行分析比较,结果表明基于局部切空间排列和支持向量机的机电系统故障诊断模型诊断精度可达到96.6667%,可以有效提取故障的敏感特征并解决机电系统故障样本缺乏的问题。 展开更多
关键词 机电系统 故障诊断 局部切空间排列算法 支持向量机 网格搜索
在线阅读 下载PDF
局部切空间排列算法用于轴承早期故障诊断 被引量:14
5
作者 杨庆 陈桂明 +1 位作者 何庆飞 刘鲭洁 《振动.测试与诊断》 EI CSCD 北大核心 2012年第5期831-835,867-868,共5页
提出了一种基于经验模态分解(EMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先,利用经验模态分解算法分解滚动轴承不同模式下的振动信号,得到各阶本征模态分量和残余分量,提取各分量中的幅域参数和频域参数组成... 提出了一种基于经验模态分解(EMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先,利用经验模态分解算法分解滚动轴承不同模式下的振动信号,得到各阶本征模态分量和残余分量,提取各分量中的幅域参数和频域参数组成原始特征参数集;然后,建立基于类别可分性测度的邻域参数k选取方法,运用局部切空间排列算法实现敏感特征提取;最后,应用该方法对滚动轴承不同状态下的振动数据进行特征提取和模式识别,对比分析改进后的局部切空间排列算法与主成分分析、核主元分析以及传统局部切空间排列算法的故障模式识别能力。分析结果表明,该方法提取的滚动轴承故障特征敏感性较好,提高了故障模式识别能力,实现了滚动轴承的早期故障诊断。 展开更多
关键词 特征提取 局部切空间排列算法 经验模态分解 模式识别 滚动轴承
在线阅读 下载PDF
基于非线性流形学习的喘振监测技术研究 被引量:12
6
作者 张熠卓 徐光华 梁霖 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第7期44-48,共5页
为了提取压缩机喘振发作时表现出的非线性特性,引入了一种新的喘振特征提取方法.首先对原始信号进行多元统计分析,构造高维特征空间,然后利用局部切空间排列的流形学习方法提取出一维主流形,进而通过主流形几何结构的变化来反映系统的... 为了提取压缩机喘振发作时表现出的非线性特性,引入了一种新的喘振特征提取方法.首先对原始信号进行多元统计分析,构造高维特征空间,然后利用局部切空间排列的流形学习方法提取出一维主流形,进而通过主流形几何结构的变化来反映系统的非线性变化.分析结果表明,与相关积分方法相比,该方法可以提前1 s识别出喘振特征,并且能够降低误报率,因此在喘振监测中具有良好的应用前景. 展开更多
关键词 喘振 流形学习 局部切空间排列
在线阅读 下载PDF
基于改进距离的孤立点检测方法 被引量:12
7
作者 韦佳 彭宏 林毅申 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期25-30,共6页
局部切空间排列(LTSA)算法是一种有效的流形学习方法,但该算法对孤立点的存在非常敏感.为了增强LTSA算法对孤立点的鲁棒性,文中提出了一种基于改进距离的孤立点检测方法.该方法通过改进距离来度量样本点之间的距离,降低了样本点分布不... 局部切空间排列(LTSA)算法是一种有效的流形学习方法,但该算法对孤立点的存在非常敏感.为了增强LTSA算法对孤立点的鲁棒性,文中提出了一种基于改进距离的孤立点检测方法.该方法通过改进距离来度量样本点之间的距离,降低了样本点分布不均匀对孤立点检测算法的影响.实验结果表明,该数据预处理方法能有效地提高LTSA算法的鲁棒性,更好地挖掘数据集的本征特性,具有更好的数据可视化效果. 展开更多
关键词 数据预处理 孤立点检测 改进距离 流形学习 局部切空间排列
在线阅读 下载PDF
基于敏感特征选择与流形学习维数约简的故障诊断 被引量:42
8
作者 苏祖强 汤宝平 姚金宝 《振动与冲击》 EI CSCD 北大核心 2014年第3期70-75,共6页
针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selectio... 针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selection,IKDM-FS),在核空间中计算样本类间距离和类内散度,优选出使样本类间距大、类内散度小的特征,并根据特征的敏感程度对特征进行加权。通过线性局部切空间排列算法(Linear Local Tangent Space Alignment,LLTSA)对由敏感特征组成的特征子集进行特征融合,提取出对故障分类更加敏感的融合特征,并输入加权k最近邻分类器(Weighted k Nearest Neighbor Classifier,WKNNC)进行故障识别。WKNNC具有比k最近邻分类器(k Nearest Neighbor Classifier,KNNC)更加稳定的识别精度。最后,通过滚动轴承故障模拟实验验证了该方法的有效性。 展开更多
关键词 故障诊断 特征选择 改进的核空间距离测度 线性局部切空间排列 加权k最近邻分类器
在线阅读 下载PDF
基于局部切空间排列和K-最近邻分类器的转子故障诊断方法 被引量:16
9
作者 孙斌 刘立远 牛翀 《中国机械工程》 EI CAS CSCD 北大核心 2015年第1期74-78,共5页
为了解决大型机械设备故障数据难以准确快速提取的问题,提出了一种基于局部切空间排列(LTSA)和K-最近邻分类器的转子故障诊断模型。首先基于转子的振动信号构造一个高维多征兆矩阵,利用LTSA提取高维矩阵的低维特征向量,映射在可视空间里... 为了解决大型机械设备故障数据难以准确快速提取的问题,提出了一种基于局部切空间排列(LTSA)和K-最近邻分类器的转子故障诊断模型。首先基于转子的振动信号构造一个高维多征兆矩阵,利用LTSA提取高维矩阵的低维特征向量,映射在可视空间里;然后将提取的低维特征向量输入K-最近邻分类器进行故障模式识别。试验和数据降维仿真过程表明,该模型的准确度和快速性均优于LTSA和神经网络以及LTSA和支持向量机组成的故障诊断模型。 展开更多
关键词 局部切空间排列 K-最近邻分类器 模式识别 故障诊断
在线阅读 下载PDF
基于线性局部切空间排列维数化简的故障诊断 被引量:35
10
作者 李锋 汤宝平 陈法法 《振动与冲击》 EI CSCD 北大核心 2012年第13期36-40,61,共6页
为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregres... 为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregression,AR)模型系数构造全面表征不同故障特性的混合域特征集,再利用LLTSA将高维混合域特征集化简为故障区分度更好的低维特征矢量,并输入到最近邻分类器(K-nearest Neighbors Classifier,KNNC)中进行故障模式识别。所提出的诊断模型充分融合混合域特征融合在故障特征的全面提取、LLTSA在信息的有效化简及KNNC在分类决策方面的优势,实现诊断方法的自动化、高识别率及较好的通用性。用深沟球轴承不同部位、不同程度故障诊断实例验证该模型的有效性。 展开更多
关键词 混合域特征融合 线性局部切空间排列 维数化简 最近邻分类器 故障诊断
在线阅读 下载PDF
基于多故障流形的旋转机械故障诊断 被引量:9
11
作者 苏祖强 汤宝平 +1 位作者 赵明航 秦毅 《振动工程学报》 EI CSCD 北大核心 2015年第2期309-315,共7页
针对旋转机械不同故障可能分布于不同故障流形,提出了基于多故障流形的旋转机械故障诊断方法。该方法分别提取每一类故障对应的故障流形,并在多故障流形上进行新增样本的故障识别。针对所需解决的低维流形提取、流形内蕴维数选取和多故... 针对旋转机械不同故障可能分布于不同故障流形,提出了基于多故障流形的旋转机械故障诊断方法。该方法分别提取每一类故障对应的故障流形,并在多故障流形上进行新增样本的故障识别。针对所需解决的低维流形提取、流形内蕴维数选取和多故障流形上的故障识别问题,分别采用线性局部切空间排列算法和免疫遗传算法来进行低维故障流形提取和流形内蕴维数选取,并通过故障样本重构误差这一新的判别准则进行故障识别。齿轮箱故障模拟实验的结果验证了此方法的有效性。 展开更多
关键词 故障诊断 旋转机械 多故障流形 局部切空间排列算法
在线阅读 下载PDF
有监督LLTSA特征约简旋转机械故障诊断 被引量:11
12
作者 苏祖强 汤宝平 +1 位作者 邓蕾 尹爱军 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第8期1766-1771,共6页
线性局部切空间排列(LLTSA)为无监督特征约简方法,对多域故障特征集进行维数约简,会导致故障解耦不完全、故障间仍然存在混叠。针对这个问题,提出有监督线性局部切空间排列(S-LLTSA)特征约简方法,将类判别信息融入特征约简过程,实现了... 线性局部切空间排列(LLTSA)为无监督特征约简方法,对多域故障特征集进行维数约简,会导致故障解耦不完全、故障间仍然存在混叠。针对这个问题,提出有监督线性局部切空间排列(S-LLTSA)特征约简方法,将类判别信息融入特征约简过程,实现了数据集本征结构与类判别信息的有机结合,可提取出最优低维敏感故障特征向量;并通过自适应近邻分类器(ANNC)来构建故障特征向量与故障类别的对应关系。S-LLTSA特征约简有效地增加了故障特征的可辨识性,而ANNC具有优异的模式辨识能力,进一步提高了故障诊断的精度。齿轮箱故障模拟实验验证了提出的旋转机械故障诊断方法的有效性。 展开更多
关键词 旋转机械 故障诊断 维数约简 有监督线性局部切空间排列 自适应邻域分类器
在线阅读 下载PDF
流形学习中非线性维数约简方法概述 被引量:24
13
作者 黄启宏 刘钊 《计算机应用研究》 CSCD 北大核心 2007年第11期19-25,共7页
较为详细地回顾了流形学习中非线性维数约简方法,分析了它们各自的优势和不足。与传统的线性维数约简方法相比较,可以发现非线性高维数据的本质维数,有利于进行维数约简和数据分析。最后展望了流形学习中非线性维数方法的未来研究方向,... 较为详细地回顾了流形学习中非线性维数约简方法,分析了它们各自的优势和不足。与传统的线性维数约简方法相比较,可以发现非线性高维数据的本质维数,有利于进行维数约简和数据分析。最后展望了流形学习中非线性维数方法的未来研究方向,期望进一步拓展流形学习的应用领域。 展开更多
关键词 维数约简 流形学习 多维尺度 等距映射 拉普拉斯特征映射 局部线性嵌入 局部切空间排列
在线阅读 下载PDF
增量式监督局部切空间排列算法及齿轮箱故障诊断实验验证 被引量:6
14
作者 佘博 田福庆 +1 位作者 梁伟阁 汤健 《振动与冲击》 EI CSCD 北大核心 2018年第13期105-110,129,共7页
针对局部切空间排列算法面临的无法利用样本标签信息和不能高效处理增量式维数约简问题,提出一种新的增量式监督局部切空间排列算法(Incremental Supervised Local Tangent Space Alignment,ISLTSA)。为充分利用训练样本标签信息,在LTS... 针对局部切空间排列算法面临的无法利用样本标签信息和不能高效处理增量式维数约简问题,提出一种新的增量式监督局部切空间排列算法(Incremental Supervised Local Tangent Space Alignment,ISLTSA)。为充分利用训练样本标签信息,在LTSA算法的基础上加入散度矩阵,构造新的最小目标函数,使得高维样本的低维嵌入坐标同类聚集、异类分离。对于新增样本可能影响部分训练样本局部邻域,更新全局坐标矩阵,获取训练样本低维坐标和新增样本低维坐标,并作为初值进行特征值迭代实现所有样本全局坐标的更新。结合支持向量机分类算法,将ISLTSA算法应用于齿轮箱的故障状态识别,实验分析验证了该方法的监督学习能力,可提高故障状态识别率,并具备增量学习能力,可降低维数约简方法的复杂度。 展开更多
关键词 增量式学习 监督局部切空间排列 故障诊断 支持向量机
在线阅读 下载PDF
基于LTSA和MICA与PCA联合指标的过程监控方法及应用 被引量:9
15
作者 江伟 王昕 王振雷 《化工学报》 EI CAS CSCD 北大核心 2015年第12期4895-4903,共9页
独立成分分析(ICA)方法主要被用来对线性非高斯过程进行监控,为了提高对非高斯过程的监控效果,则利用过程数据信息对ICA的监控指标进行了改进,提出了一种改进的独立成分分析(MICA)方法。许多实际工业过程数据都具有非线性、非高斯与高... 独立成分分析(ICA)方法主要被用来对线性非高斯过程进行监控,为了提高对非高斯过程的监控效果,则利用过程数据信息对ICA的监控指标进行了改进,提出了一种改进的独立成分分析(MICA)方法。许多实际工业过程数据都具有非线性、非高斯与高斯混合分布的特点,为此提出了一种基于LTSA和MICA与PCA联合指标的过程监控的方法。首先采用局部切空间排列(LTSA)算法对样本数据进行非线性降维,然后分别用MICA和PCA方法得到非高斯与高斯统计量,对其进行加权得到新的统计量,并被用于过程监控。最后将该方法应用在田纳西-伊斯曼(TE)过程和乙烯裂解炉的过程监控中,证明了该方法的有效性。 展开更多
关键词 算法 主元分析 过程控制 非高斯 改进的独立成分分析 局部切空间排列算法 联合指标
在线阅读 下载PDF
判别式正交线性局部切空间排列故障辨识 被引量:4
16
作者 李锋 赵洁 +1 位作者 王家序 丁行武 《计算机集成制造系统》 EI CSCD 北大核心 2014年第1期173-181,共9页
针对现有旋转机械故障诊断模式难以实现自动化、高精度和泛化性的关键问题,提出基于判别式正交线性局部切空间排列特征约简的故障辨识方法。该方法首先构造全面表征不同故障特性的时、频域特征集,再利用DOLLTSA将高维时、频域特征集自... 针对现有旋转机械故障诊断模式难以实现自动化、高精度和泛化性的关键问题,提出基于判别式正交线性局部切空间排列特征约简的故障辨识方法。该方法首先构造全面表征不同故障特性的时、频域特征集,再利用DOLLTSA将高维时、频域特征集自动约简为区分度更好的低维特征矢量,并输入到K-近邻分类器中进行故障模式辨识。时、频域特征融集可较全面准确地反映旋转机械的故障特征;DOLLTSA综合利用局部几何结构和类判别信息进行流形解耦,并采用谱回归法和子空间正交化处理来优化低维嵌入子空间,提高了故障辨识精度。深沟球轴承故障诊断实例和空间轴承寿命状态辨识实例验证了所提方法的有效性。 展开更多
关键词 时、频域特征集 判别式正交线性局部切空间排列 特征约简 流形学习 故障辨识
在线阅读 下载PDF
基于几何距离摄动的局部切空间排列算法 被引量:4
17
作者 杨安平 陈松乔 胡鹏 《计算机工程与应用》 CSCD 北大核心 2011年第29期168-170,204,共4页
局部切空间排列算法(Local Tangent Space Alignment)是一种具有严格数学推理的流形学习算法,能有效地学习出高维数据的低维嵌入坐标,但也存在一些不足,如对近邻点的选取依赖性较强、不适应处理高曲率分布、稀疏分布数据源。针对这些缺... 局部切空间排列算法(Local Tangent Space Alignment)是一种具有严格数学推理的流形学习算法,能有效地学习出高维数据的低维嵌入坐标,但也存在一些不足,如对近邻点的选取依赖性较强、不适应处理高曲率分布、稀疏分布数据源。针对这些缺点,提出了一种基于几何距离摄动的局部切空间排列算法。利用几何摄动条件把样本空间划分为一组线性分块的组合,在每一个线性块上应用LTSA算法完成降维。实验结果表明了该算法的有效性。 展开更多
关键词 降维 局部切空间排列 流形 几何摄动 最大线性块
在线阅读 下载PDF
带标志点的LTSA算法及其在轴承故障诊断中的应用 被引量:3
18
作者 杨庆 陈桂明 +1 位作者 江良洲 何庆飞 《振动工程学报》 EI CSCD 北大核心 2012年第6期732-738,共7页
针对非监督式流形学习算法面临的增量式学习问题,提出一种带标志点的增量式局部切空间排列算法。该方法在局部切空间排列算法的基础上,利用最小角度回归算法从原始训练样本中选取标志点,以选取的标志点和新增样本建立所有样本的全局坐... 针对非监督式流形学习算法面临的增量式学习问题,提出一种带标志点的增量式局部切空间排列算法。该方法在局部切空间排列算法的基础上,利用最小角度回归算法从原始训练样本中选取标志点,以选取的标志点和新增样本建立所有样本的全局坐标矩阵,利用原始样本低维嵌入坐标和全局坐标矩阵对新增样本的低维嵌入坐标进行估计,并采用全局坐标矩阵特征值迭代方法更新所有样本的低维嵌入坐标。滚动轴承4种不同状态振动数据样本的增量式识别结果表明,本方法在实现局部切空间排列算法增量式学习的基础上,保持了对滚动轴承不同状态样本较高的类别可分性测度。 展开更多
关键词 局部切空间排列算法 最小角度回归算法 增量式学习 模式识别 滚动轴承
在线阅读 下载PDF
面向高光谱影像分类的改进局部切空间排列降维 被引量:2
19
作者 孙伟伟 刘春 +1 位作者 施蓓琦 李巍岳 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期124-130,共7页
提出多策略提升的局部切空间排列算法来解决常规局部切空间排列降维在高光谱影像分类中计算复杂度高的问题.通过引入随机映射来预先减少高光谱影像波段数,降低后续k-邻域和局部切空间构建的计算复杂度;采用递归兰索斯切分算法快速构建近... 提出多策略提升的局部切空间排列算法来解决常规局部切空间排列降维在高光谱影像分类中计算复杂度高的问题.通过引入随机映射来预先减少高光谱影像波段数,降低后续k-邻域和局部切空间构建的计算复杂度;采用递归兰索斯切分算法快速构建近似k-邻域,降低常规k-邻域构建的计算时间;采用快速近似奇异值分解算法提高全局排列矩阵的本征分解计算速度.利用两个不同的高光谱数据集,设计4组实验来分析多策略速度提升的局部切空间排列算法的计算性能和分类效果.实验证明,相比常规局部切空间排列方法,多策略提升的局部切空间排列方法损失约1%左右的总体分类精度却能够提高至少3倍的计算速度. 展开更多
关键词 多策略提升局部切空间排列 局部切空间排列 随机映射 降维 高光谱影像分类
在线阅读 下载PDF
基于流形学习的泛化改进的LTSA算法 被引量:7
20
作者 崔鹏 张雪婷 《计算机工程与应用》 CSCD 北大核心 2017年第3期201-204,230,共5页
在数据稀疏、数据非均匀分布和数据流形具有较大曲率的情况下,传统的局部切空间方法不能够有效地揭示流形结构。提出了一种泛化的ILTSA(GILTSA)流形学习方法,该方法以改进的局部切空间排列算法(ILTSA)为基础,在解决流形结构问题的同时,... 在数据稀疏、数据非均匀分布和数据流形具有较大曲率的情况下,传统的局部切空间方法不能够有效地揭示流形结构。提出了一种泛化的ILTSA(GILTSA)流形学习方法,该方法以改进的局部切空间排列算法(ILTSA)为基础,在解决流形结构问题的同时,不仅能够获得用于人脸识别更好的低维特征,而且能有效地处理日益增加的数据集的问题。该方法首先基于样品间距离选择近邻集,实现训练集的低维流形,为每个新样本寻找最近的样本训练集。然后结合ILTSA算法,根据其最近样本投影距离计算低维流形。在ORL的人脸图像数据库的实验、Swiss roll和手书的"2"等实验结果表明,与局部线性嵌入和局部切空间排列算法等相比,GILTSA方法增加了整体精度。 展开更多
关键词 改进的局部切空间排列(ILTSA) 人脸识别 流形学习 可泛化
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部