Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by t...Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by the cooperation between integrated steering control unit and pump & motor displacement controller. The steering simulation is conducted by using Simulink of Matlab. It is indicated that this steering control strategy can reduce the average vehicle speed automatically to achieve the driver's expected steering radius exactly in the case of en- suring not exceeding the system pressure threshold and no sideslip.展开更多
Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with meri...Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.展开更多
This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be ...This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed,the system control objectives are different for each zone.To deal with this issue,we develop a new control approach based on a linear quadratic regulator with variable generator torque.Our proposed approach enables the optimization of the rotational speed of the turbine,which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain.The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco.The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation(2630103)
文摘Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by the cooperation between integrated steering control unit and pump & motor displacement controller. The steering simulation is conducted by using Simulink of Matlab. It is indicated that this steering control strategy can reduce the average vehicle speed automatically to achieve the driver's expected steering radius exactly in the case of en- suring not exceeding the system pressure threshold and no sideslip.
文摘Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.
文摘This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed.Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed,the system control objectives are different for each zone.To deal with this issue,we develop a new control approach based on a linear quadratic regulator with variable generator torque.Our proposed approach enables the optimization of the rotational speed of the turbine,which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain.The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco.The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed.