期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进K-SVD和非局部正则化的图像去噪 被引量:10
1
作者 杨爱萍 田玉针 +1 位作者 何宇清 董翠翠 《计算机工程》 CAS CSCD 北大核心 2015年第5期249-253,共5页
K-奇异值分解(K-SVD)算法在强噪声下的去噪性能较差。为此,提出一种新的图像去噪算法。使用相关系数匹配准则和噪声原子裁剪方法改进传统K-SVD算法,提高原算法的去噪性能,将非局部正则项融入图像去噪模型,并采用非局部自相似性进一步改... K-奇异值分解(K-SVD)算法在强噪声下的去噪性能较差。为此,提出一种新的图像去噪算法。使用相关系数匹配准则和噪声原子裁剪方法改进传统K-SVD算法,提高原算法的去噪性能,将非局部正则项融入图像去噪模型,并采用非局部自相似性进一步改善图像的去噪效果。实验结果表明,与传统K-SVD算法相比,该算法在提高同质区域平滑性的同时,能保留更多的纹理、边缘等细节特征。 展开更多
关键词 图像去噪 稀疏表示 奇异值分解 正交匹配追踪算法 字典优化 非局部自相似性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部