In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
多目标跟踪技术对猪只精细化养殖具有重要意义。针对饲养环境差异、猪只的快速移动以及群猪之间的频繁遮挡带来的多目标跟踪挑战,该研究提出了一种基于Byte的生猪多目标跟踪算法UKFTrack。首先,构建了一个采用定向边界框(oriented bound...多目标跟踪技术对猪只精细化养殖具有重要意义。针对饲养环境差异、猪只的快速移动以及群猪之间的频繁遮挡带来的多目标跟踪挑战,该研究提出了一种基于Byte的生猪多目标跟踪算法UKFTrack。首先,构建了一个采用定向边界框(oriented bounding box,OBB)标注的多样化数据集,涵盖了猪只多种运动模式以及不同饲养场景和猪群密度;其次,引入了无迹卡尔曼滤波以更好地适配OBB标注,并对传统的状态向量进行扩展,新增了角度和角速度参数,设计了残差函数处理角度变量以避免直接相减所造成的误差。最后,提出了一种多阶段匹配策略,通过多次轨迹关联和补充匹配机制,确保在遮挡严重或剧烈运动的情况下,仍能保持对目标的持续跟踪。试验结果表明,在白天重度密集、白天极度密集、夜间重度密集和夜间极度密集4种复杂场景下,UKFTrack的高阶跟踪精度(higher order tracking accuracy,HOTA)分别为96.10%、83.10%、76.50%和84.00%,IDF1得分(identification F1 score)分别为95.70%、78.20%、70.10%和77.60%。相较于StrongSORT,UKFTrack的HOTA分别提高了1.2、13.3、5.9和6.3个百分点,IDF1分别提高了0.1、10.9、5.4和7.4个百分点。因此,该研究提出的跟踪算法能实现复杂环境下群体生猪的准确跟踪,且展现出较强的鲁棒性,能为实际应用中猪只行为与健康监测提供可靠的技术支持。展开更多
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
文摘多目标跟踪技术对猪只精细化养殖具有重要意义。针对饲养环境差异、猪只的快速移动以及群猪之间的频繁遮挡带来的多目标跟踪挑战,该研究提出了一种基于Byte的生猪多目标跟踪算法UKFTrack。首先,构建了一个采用定向边界框(oriented bounding box,OBB)标注的多样化数据集,涵盖了猪只多种运动模式以及不同饲养场景和猪群密度;其次,引入了无迹卡尔曼滤波以更好地适配OBB标注,并对传统的状态向量进行扩展,新增了角度和角速度参数,设计了残差函数处理角度变量以避免直接相减所造成的误差。最后,提出了一种多阶段匹配策略,通过多次轨迹关联和补充匹配机制,确保在遮挡严重或剧烈运动的情况下,仍能保持对目标的持续跟踪。试验结果表明,在白天重度密集、白天极度密集、夜间重度密集和夜间极度密集4种复杂场景下,UKFTrack的高阶跟踪精度(higher order tracking accuracy,HOTA)分别为96.10%、83.10%、76.50%和84.00%,IDF1得分(identification F1 score)分别为95.70%、78.20%、70.10%和77.60%。相较于StrongSORT,UKFTrack的HOTA分别提高了1.2、13.3、5.9和6.3个百分点,IDF1分别提高了0.1、10.9、5.4和7.4个百分点。因此,该研究提出的跟踪算法能实现复杂环境下群体生猪的准确跟踪,且展现出较强的鲁棒性,能为实际应用中猪只行为与健康监测提供可靠的技术支持。