Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the ...Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the postmature result of oil-gas' thermal metamorphism. The close relationship of anthraxolite and Sn-polymetal deposit reveals the space-time relation between oil-gas evolution and Sn-polymetal mineralization. Sulfur isotope of Longtoushan deposit is close to oil's sulfur in Devonian, which indicates obvious relationship between the sulfur's source of deposit and oil-gas' activity. The forming of Longtoushan deposit relates to exhalative-sedimentary mineralization in Devonian. Because of the favorable hydrocarbon-forming condition of Longtoushan reef and surrounding basin facies' black shale and peat, coupling of ore-formation and hydrocarbon-forming occurs in seabed's hydrothermal convection. The distributing of ore-forming elements indicates the presence of hydrothermal convection system. The thermal fluid containing organic matters conduces to Sn-polymetal elements' activation and transfer, and provides catalyzing condition to the transforming from SO42- to S2-. The erosion action of brine containing organic acid to reef limestone induces the growing of crannies and karst's caverns, which provides advantageous space to Sn-polymetal mineralization. The heat source of mineralization provides thermocatalysis condition to hydrocarbon-forming. When the circulatory fluid containing oil-gas enters the high-temperature region(>150 ℃ ), the oil-gas is decomposed and anthraxolite comes into being.展开更多
A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leachin...A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leaching system are similar, and chlorine ion is involved in the electrogenerative leaching process of sulfide minerals directly. The output power increases with the increase of Cl^- concentration. The influence on the electrogenerative leaching rate decreases when the Cl^- concentration reaches a certain value. The mechanisms of anodic reaction are deduced based on the reasonable hypothesis, and kinetic equations with respect to chlorine ions for each sulfide mineral are obtained. The kinetic equations show that when concentration of Cl^- is relatively low, the electrogenerative leaching rates are predicted to have 2/5,3/7,1/3 and 1/3 order dependence on Cl^- concentration for chalcopyrite concentrate,nickel concentrate, sphalerite and galena. As concentration of Cl^- increases, the correlative dependence of electrogenerative leaching rate on concentration of Cl^- becomes weak.展开更多
文摘Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the postmature result of oil-gas' thermal metamorphism. The close relationship of anthraxolite and Sn-polymetal deposit reveals the space-time relation between oil-gas evolution and Sn-polymetal mineralization. Sulfur isotope of Longtoushan deposit is close to oil's sulfur in Devonian, which indicates obvious relationship between the sulfur's source of deposit and oil-gas' activity. The forming of Longtoushan deposit relates to exhalative-sedimentary mineralization in Devonian. Because of the favorable hydrocarbon-forming condition of Longtoushan reef and surrounding basin facies' black shale and peat, coupling of ore-formation and hydrocarbon-forming occurs in seabed's hydrothermal convection. The distributing of ore-forming elements indicates the presence of hydrothermal convection system. The thermal fluid containing organic matters conduces to Sn-polymetal elements' activation and transfer, and provides catalyzing condition to the transforming from SO42- to S2-. The erosion action of brine containing organic acid to reef limestone induces the growing of crannies and karst's caverns, which provides advantageous space to Sn-polymetal mineralization. The heat source of mineralization provides thermocatalysis condition to hydrocarbon-forming. When the circulatory fluid containing oil-gas enters the high-temperature region(>150 ℃ ), the oil-gas is decomposed and anthraxolite comes into being.
基金Project(50374077) supported by the National Natural Science Foundation of China
文摘A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leaching system are similar, and chlorine ion is involved in the electrogenerative leaching process of sulfide minerals directly. The output power increases with the increase of Cl^- concentration. The influence on the electrogenerative leaching rate decreases when the Cl^- concentration reaches a certain value. The mechanisms of anodic reaction are deduced based on the reasonable hypothesis, and kinetic equations with respect to chlorine ions for each sulfide mineral are obtained. The kinetic equations show that when concentration of Cl^- is relatively low, the electrogenerative leaching rates are predicted to have 2/5,3/7,1/3 and 1/3 order dependence on Cl^- concentration for chalcopyrite concentrate,nickel concentrate, sphalerite and galena. As concentration of Cl^- increases, the correlative dependence of electrogenerative leaching rate on concentration of Cl^- becomes weak.