In this paper, we investigate the growth and the fixed points of solutions and their 1st, 2nd derivatives of second order non-homogeneous linear differential equation and obtain the estimation of the order and the exp...In this paper, we investigate the growth and the fixed points of solutions and their 1st, 2nd derivatives of second order non-homogeneous linear differential equation and obtain the estimation of the order and the exponent of convergence of fixed points of solutions of the above equations.展开更多
This paper obtains a group of necessary and sufficient conditions which guarantee a closed linear operator A to be the complete infinitesimal generator of an analytic semigroup of growth order α.
Under the conditions(without independence): (i) There Exists alpha > 0, such that sup E\Z(n)\(alpha) < +infinity, (ii) There Exists beta > 0, such that sup E\Z(n)\(-beta) < +infinity, the random series Sig...Under the conditions(without independence): (i) There Exists alpha > 0, such that sup E\Z(n)\(alpha) < +infinity, (ii) There Exists beta > 0, such that sup E\Z(n)\(-beta) < +infinity, the random series Sigma a(n) Z(n)e(-lambda n) and series' Sigma a(n)e(-lambda ns) a.s. have the same abscissa of convergence, the (R) order, lower order and type.展开更多
In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the o...In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.展开更多
Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient funct...Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient function, and any direction is a Borel direction (without finite exceptional value) of f(w).展开更多
This present paper investigates the complex oscillation theory of certain high non-homogeneous linear differential equations and obtains a series of new results.
文摘In this paper, we investigate the growth and the fixed points of solutions and their 1st, 2nd derivatives of second order non-homogeneous linear differential equation and obtain the estimation of the order and the exponent of convergence of fixed points of solutions of the above equations.
文摘This paper obtains a group of necessary and sufficient conditions which guarantee a closed linear operator A to be the complete infinitesimal generator of an analytic semigroup of growth order α.
文摘Under the conditions(without independence): (i) There Exists alpha > 0, such that sup E\Z(n)\(alpha) < +infinity, (ii) There Exists beta > 0, such that sup E\Z(n)\(-beta) < +infinity, the random series Sigma a(n) Z(n)e(-lambda n) and series' Sigma a(n)e(-lambda ns) a.s. have the same abscissa of convergence, the (R) order, lower order and type.
基金supported by the National Natural Science Foundation of China (11171119 and 10871076)
文摘In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.
文摘Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient function, and any direction is a Borel direction (without finite exceptional value) of f(w).
基金Funded by the Natural Science Foundation of the Education Committee of Sichuan Province (2004A104).
文摘This present paper investigates the complex oscillation theory of certain high non-homogeneous linear differential equations and obtains a series of new results.