In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p...In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.展开更多
Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circ...Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics.展开更多
The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components of...The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.展开更多
The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic mod...The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.展开更多
An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per...An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.展开更多
针对消防设施选址问题,构建考虑时效性、市民等待救援的焦急心理和建设成本的三目标消防设施选址模型,以实现更科学的消防设施布局。鉴于该问题的NP难特性,提出基于算子学习的多目标深度强化学习模型(multi-objective deep reinforcemen...针对消防设施选址问题,构建考虑时效性、市民等待救援的焦急心理和建设成本的三目标消防设施选址模型,以实现更科学的消防设施布局。鉴于该问题的NP难特性,提出基于算子学习的多目标深度强化学习模型(multi-objective deep reinforcement learning,MDRL)。设计多种优化算子作为强化学习的动作空间,训练策略网络以选择最佳优化算子来改进解决方案。针对多目标问题,设计基于优势差异的方法(MDRL-AD)和基于支配性评估的方法(MDRL-DE)。采用四种规模的测试算例及实际案例进行数值实验,将MDRL和改进的NSGA-Ⅱ、MOPSO、L2I算法进行比较,并利用Hypervolume指标、Spacing指标、Ω指标、IGD指标对算法性能进行评估。实验结果表明,MDRL-AD方法更适用于求解小规模算例,MDRL-DE方法则在求解大规模和超大规模算例时相比其他算法优势明显。MDRL在非劣解集的收敛性和均匀性方面明显优于其他对比算法,为消防设施布局规划提供了一种有竞争力的解决方案。展开更多
文摘In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.
基金Projects(11164007,61275174)supported by the National Natural Science Foundation of ChinaProject(20100162110068)supported by the Doctoral Program of Higher Education of China+1 种基金Project(20132BAB212007)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ11107)supported by Scientific Foundation of Jiangxi Education Department,China
文摘Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics.
基金supported by the Natural Science Foundation of Shannxi Province(2017JQ5016)the Joint Laboratory for Sea Measurement and Control of Aircraft(DOM2016OF011)
文摘The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.
基金Project(50278062) supported by the National Natural Science Foundation of ChinaProject(003611611)supported by the Natural Science Foundation of Tianjin, China
文摘The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.
文摘An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.
文摘针对消防设施选址问题,构建考虑时效性、市民等待救援的焦急心理和建设成本的三目标消防设施选址模型,以实现更科学的消防设施布局。鉴于该问题的NP难特性,提出基于算子学习的多目标深度强化学习模型(multi-objective deep reinforcement learning,MDRL)。设计多种优化算子作为强化学习的动作空间,训练策略网络以选择最佳优化算子来改进解决方案。针对多目标问题,设计基于优势差异的方法(MDRL-AD)和基于支配性评估的方法(MDRL-DE)。采用四种规模的测试算例及实际案例进行数值实验,将MDRL和改进的NSGA-Ⅱ、MOPSO、L2I算法进行比较,并利用Hypervolume指标、Spacing指标、Ω指标、IGD指标对算法性能进行评估。实验结果表明,MDRL-AD方法更适用于求解小规模算例,MDRL-DE方法则在求解大规模和超大规模算例时相比其他算法优势明显。MDRL在非劣解集的收敛性和均匀性方面明显优于其他对比算法,为消防设施布局规划提供了一种有竞争力的解决方案。