The measurement and control of high temperature play very important roles in national defense,military,scientific experiments,industrial and agricultural production.Photoelectric pyrometer is one of the important radi...The measurement and control of high temperature play very important roles in national defense,military,scientific experiments,industrial and agricultural production.Photoelectric pyrometer is one of the important radiation thermometers for non-contact temperature measurement.It has an important application in the field of high temperature measurement,and its performance directly affects the accuracy of temperature measurement.By improving the design of the detection optical system of the photoelectric pyrometer,the imaging performance of the photoelectric pyrometer can be improved effectively,and the temperature measurement accuracy can be improved.In this paper,the temperature measurement principle of photoelectric pyrometer,the wo rking principle of the detection optical system and the composition of the system are introduced.The optical components that affect the imaging of the optical system of the photoelectric pyrometer are analyzed.The optical pyrometer detection optical system is simulated by ZEMAX software,based on the analysis results,the Modulation Transfer Function(MTF)and the spot Diagram are used as the main evaluation criteria to optimize the design of the objective lens of the photoelectric pyrometer detection optical system.The imaging performance of the photoelectric pyrometer detection optical system and the accuracy of temperature measurement of the photoelectric pyrometer are improved by optimization design of the detection optical system.展开更多
Development of a prototype of a portable optical sensing system is presented for fast detecting of samples’fluorescence spectra.A compact configuration is achieved by integrating a small spectrometer,a microcontrolle...Development of a prototype of a portable optical sensing system is presented for fast detecting of samples’fluorescence spectra.A compact configuration is achieved by integrating a small spectrometer,a microcontroller,a Universal Serial Bus(USB)Host Shield,a network module,and a web server.The fluorescence spectra of a tested sample can be obtained.Then the test data are sent through network communication to our Cloud Server which can store the data for further analyses.With this configuration,test results can be revealed in a short time and downloaded by users to their laptops,tablets or cellphones anytime and anywhere.展开更多
Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method ...Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.展开更多
To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed...To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed based on the ordinary communication optical fiber. The sensing theories were analyzed, and the experimental studies were also carried out. The quasi-distributed sensing system based on optical time domain reflective technology was established. The detection wavelength and spatial resolution were analyzed, and the estimation formula of maximal number of sensing point was also given. The results show that the system can realize the quasi-distributed test of measurand with single fiber, which helps to simplify the in-out wires. Moreover it can take on the important task of long-term and continuous monitoring of prestress, which helps to realize the life cycle detection of prestress, and play an important role in the estimating of bridge health state.展开更多
基金Jilin Province Science and Technology Development Plan Project(20190701024GH)。
文摘The measurement and control of high temperature play very important roles in national defense,military,scientific experiments,industrial and agricultural production.Photoelectric pyrometer is one of the important radiation thermometers for non-contact temperature measurement.It has an important application in the field of high temperature measurement,and its performance directly affects the accuracy of temperature measurement.By improving the design of the detection optical system of the photoelectric pyrometer,the imaging performance of the photoelectric pyrometer can be improved effectively,and the temperature measurement accuracy can be improved.In this paper,the temperature measurement principle of photoelectric pyrometer,the wo rking principle of the detection optical system and the composition of the system are introduced.The optical components that affect the imaging of the optical system of the photoelectric pyrometer are analyzed.The optical pyrometer detection optical system is simulated by ZEMAX software,based on the analysis results,the Modulation Transfer Function(MTF)and the spot Diagram are used as the main evaluation criteria to optimize the design of the objective lens of the photoelectric pyrometer detection optical system.The imaging performance of the photoelectric pyrometer detection optical system and the accuracy of temperature measurement of the photoelectric pyrometer are improved by optimization design of the detection optical system.
基金supported by the National Key Development Program (2016YFB1102704)Natural Science Foundation of Liaoning Province (2015020115)+1 种基金National Natural Science Foundation of China (U1609209)National Science Fund for Distinguished Youth Scholars (51625504)
文摘Development of a prototype of a portable optical sensing system is presented for fast detecting of samples’fluorescence spectra.A compact configuration is achieved by integrating a small spectrometer,a microcontroller,a Universal Serial Bus(USB)Host Shield,a network module,and a web server.The fluorescence spectra of a tested sample can be obtained.Then the test data are sent through network communication to our Cloud Server which can store the data for further analyses.With this configuration,test results can be revealed in a short time and downloaded by users to their laptops,tablets or cellphones anytime and anywhere.
文摘Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.
文摘To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed based on the ordinary communication optical fiber. The sensing theories were analyzed, and the experimental studies were also carried out. The quasi-distributed sensing system based on optical time domain reflective technology was established. The detection wavelength and spatial resolution were analyzed, and the estimation formula of maximal number of sensing point was also given. The results show that the system can realize the quasi-distributed test of measurand with single fiber, which helps to simplify the in-out wires. Moreover it can take on the important task of long-term and continuous monitoring of prestress, which helps to realize the life cycle detection of prestress, and play an important role in the estimating of bridge health state.