The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<...The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<0.62 is discussed.The mixed phases are taken into account by our weight model of fitting.The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields(BEFs)and the Hartree potential.The optical absorption coefficients(OACs)of exciton interstate transition are obtained by the density matrix method.The results show that Hartree potential bends the conduction and valence bands,whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes.Furthermore,the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects.There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively,and the OACs merge together under some special conditions.The computed result of exciton interband emission energy agrees well with a previous experiment.Our conclusions are helpful for further relative theoretical studies,experiments,and design of devices consisting of these quantum well structures.展开更多
To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measu...To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond(E'-center) and Fe^3+species,respectively. The existence of Fe3+was confirmed by electron paramagnetic resonance(EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E'-center did not change in the deep ultraviolet(DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+species to Fe^2+species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+species is calculated to be 2.2 times larger than that of Fe^3+species. Peroxy linkage(POL, ≡Si–O–O–Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band.展开更多
We theoretically investigate the optical absorption coefficient(OAC)in asymmetrical Gaussian potential quantum dots subject to an applied electric field.Confined wave functions together with energies of electron energ...We theoretically investigate the optical absorption coefficient(OAC)in asymmetrical Gaussian potential quantum dots subject to an applied electric field.Confined wave functions together with energies of electron energies in an effective mass approximation framework are obtained.The OAC is expressed according to the iterative method and the compact-density-matrix approach.Based on our results,OAC is sensitively dependent on external electric field together with the incident optical intensity.Additionally,peak shifts into greater energy as the quantum dot radius decrease.Moreover,the parameters of Gaussian potential have a significant influence on the OAC.展开更多
We investigate the effects of shape and single-atom doping on the structural, optical absorption, Raman, and vibra- tional properties of Ag13, Ag12CUl, CUl3, and Cul2Agl clusters by using the (time-dependent) densit...We investigate the effects of shape and single-atom doping on the structural, optical absorption, Raman, and vibra- tional properties of Ag13, Ag12CUl, CUl3, and Cul2Agl clusters by using the (time-dependent) density functional the- ory. The results show that the most stable structures are cuboctahedron (COh) for Ag13 and icosahedron (Ih) for CUl3, Agl2CUlcore, and Cul2Aglsur. In the visible-near infrared optical absorption, the transitions consist of the interband and the intraband transitions. Moreover, red shifts are observed as follows: 1) clusters change from Agl2CUlcore to Ag13 to Ag12Culsur with the same motifs, 2) the shapes of pure Agl3 and Agl2CUlcore clusters change from COh to Ih to decahe- dron (Dh), 3) the shape of Agl2CUlsur clusters changes from Ih to COh to Dh, and 4) the shapes of pure CU13 and Cu12Agl clusters change from Ih to Dh to COb. All of the Raman and vibrational spectra exhibit many significant vibrational modes related to the shapes and the compositions of the clusters. The ranges of vibrational spectra of Ag13, Agl2CUl or CU13, and Cu12Agl clusters become narrower and the vibrational intensities increase as the shape of the clusters changes from Ih to Dh to COh.展开更多
Strain is a powerful tool to engineer the band structure of bilayer phosphorene.The band gap can be decreased by vertical tensile strain or in-plane compressive strain.At a critical strain,the gap is closed and the bi...Strain is a powerful tool to engineer the band structure of bilayer phosphorene.The band gap can be decreased by vertical tensile strain or in-plane compressive strain.At a critical strain,the gap is closed and the bilayer phosphorene is turn to be a semi-Dirac semimetal material.If the strain is stronger than the criterion,a band-inversion occurs and it re-happens when the strain is larger than another certain value.For the zigzag bilayer phosphorene ribbon,there are two edge band dispersions and each dispersion curve represents two degenerate edge bands.When the first band-inversion happens,one of the edge band dispersion disappears between the band-cross points while the other survives,and the latter will be eliminated between another pair of band-cross points of the second band-inversion.The optical absorption of bilayer phosphorene is highly polarized along armchair direction.When the strain is turn on,the optical absorption edge changes.The absorption rate for armchair polarized light is decreased by gap shrinking,while that for zigzag polarized light increases.The bandtouch and band-inversion respectively result in the sublinear and linear of absorption curve versus light frequency in low frequency limit.展开更多
Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole...Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.展开更多
In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson...In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.展开更多
The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer...The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.展开更多
An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the...An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.展开更多
The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimen...The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.展开更多
Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic eleme...Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.展开更多
The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied. The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix...The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied. The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix with embedded fcc Au nanoparticles with a mean size of 9.8-21.4nm. Spectral analysis suggests that the surface plasma resonance (SPR) absorption peak of Au particles appears at λ=492-537nm. With increasing Au content, absorption peak intensity increases, profile narrows and location redshifts. Theoretical absorption spectra are calculated based on Maxwell-Garnett theory and compared with experimental spectra.展开更多
By using the plasma enhanced chemical vapor deposition(PECVD) technique, amorphous silicon oxide films containing nanocrystalline silicon grain(nc-Si O x:H) are deposited, and the bonding configurations and optic...By using the plasma enhanced chemical vapor deposition(PECVD) technique, amorphous silicon oxide films containing nanocrystalline silicon grain(nc-Si O x:H) are deposited, and the bonding configurations and optical absorption properties of the films are investigated. The grain size can be well controlled by varying the hydrogen and oxygen content,and the largest size is obtained when the hydrogen dilution ratio R is 33. The results show that the crystallinity and the grain size of the film first increased and then decreased as R increased. The highest degree of crystallinity is obtained at R = 30.The analyses of bonding characteristics and light absorption characteristics show that the incorporation of hydrogen leads to an increase of overall bonding oxygen content in the film, and the film porosity first increases and then decreases. When R = 30, the film can be more compact, the optical absorption edge of the film is blue shifted, and the film has a lower activation energy.展开更多
Based on the microscopic nonlocal optical response theory, the intersubband optical absorption properties in AlGa As/Ga As couple quantum wells(CQWs) are investigated for p-polarized states. The numerical results sh...Based on the microscopic nonlocal optical response theory, the intersubband optical absorption properties in AlGa As/Ga As couple quantum wells(CQWs) are investigated for p-polarized states. The numerical results show that spatial nonlocality of optical responses can induce a radiation shift on optical absorption spectra due to nonlocal effects. The dependence of the radiation shift on the CQW structure and the applied electric field is clarified. It is also demonstrated that the maximal radiation shift and the least optical absorbance can be obtained by adopting an appropriate CQW structure and a suitable applied electric field. This work may provide some methods of designing the nanomaterials with controllable nonlocality and observing the spatial nonlocal effects in experiment.展开更多
Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica...Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.When the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.展开更多
A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distr...A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.展开更多
Nano metal-particle dispersed glasses are the attractive candidates for nonlinear optical material applications. Au/SiO2 nano-composite thin films with 3 vol% to 65 vol% Au are prepared by inductively coupled plasma s...Nano metal-particle dispersed glasses are the attractive candidates for nonlinear optical material applications. Au/SiO2 nano-composite thin films with 3 vol% to 65 vol% Au are prepared by inductively coupled plasma sputtering. Au particles as perfect spheres with diameters between 10 nm and 30 nm are uniformly dispersed in the SiO2 matrix. Optical absorption peaks due to the surface plasmon resonance of Au particles are observed. The absorption property is enhanced with the increase of Au content, showing a maximum value in the films with 37 vol% Au. The absorption curves of the Au/SiO2 thin films with 3 vol% to 37 vol% Au accord well with the theoretical optical absorption spectra obtained from Mie resonance theory. Increasing Au content over 37 vol% results in the partial connection of Au particles, whereby the intensity of the absorption peak is weakened and ultimately replaced by the optical absorption of the bulk. The band gap decreases with Au content increasing from 3 vol% to 37 vol % but increases as Au content further increases.展开更多
Based on the Schr ¨odinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effect...Based on the Schr ¨odinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients.展开更多
An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining t...An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.展开更多
Some realizable structures of double parabolic quantum wells(DPQWs) consisting of Al_xGa_(1-x)As/Al_yGa_(1-y)As are constructed to discuss theoretically the optical absorption due to the intersubband transition ...Some realizable structures of double parabolic quantum wells(DPQWs) consisting of Al_xGa_(1-x)As/Al_yGa_(1-y)As are constructed to discuss theoretically the optical absorption due to the intersubband transition of electrons for both symmetric and asymmetric cases with three energy levels of conduction bands. The electronic states in these structures are obtained using a finite element difference method. Based on a compact density matrix approach, the optical absorption induced by intersubband transition of electrons at room temperature is discussed. The results reveal that the peak positions and heights of intersubband optical absorption coefficients(IOACs) of DPQWs are sensitive to the barrier thickness, depending on Al component. Furthermore, external electric fields result in the decrease of peak, and play an important role in the blue shifts of absorption spectra due to electrons excited from ground state to the first and second excited states. It is found that the peaks of IOACs are smaller in asymmetric DPQWs than in symmetric ones. The results also indicate that the adjustable extent of incident photon energy for DPQW is larger than for a square one of a similar size. Our results are helpful in experiments and device fabrication.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61764012).
文摘The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<0.62 is discussed.The mixed phases are taken into account by our weight model of fitting.The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields(BEFs)and the Hartree potential.The optical absorption coefficients(OACs)of exciton interstate transition are obtained by the density matrix method.The results show that Hartree potential bends the conduction and valence bands,whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes.Furthermore,the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects.There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively,and the OACs merge together under some special conditions.The computed result of exciton interband emission energy agrees well with a previous experiment.Our conclusions are helpful for further relative theoretical studies,experiments,and design of devices consisting of these quantum well structures.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.lzujbky-2014-16)
文摘To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond(E'-center) and Fe^3+species,respectively. The existence of Fe3+was confirmed by electron paramagnetic resonance(EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E'-center did not change in the deep ultraviolet(DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+species to Fe^2+species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+species is calculated to be 2.2 times larger than that of Fe^3+species. Peroxy linkage(POL, ≡Si–O–O–Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band.
基金the National Natural Science Foundation of China(Grant Nos.51702003,61775087,and 11674312)the Provincial Foundation for Excellent Top Talents of Colleges and Universities of Anhui Province of China(Grant No.gxgwfx2019016)+1 种基金the Anhui Provincial Natural Science Foundation,China(Grant Nos.1808085ME130 and 1508085QF140)University Outstanding Young Talents Support Program Fund(Grant No.gxyqZD2018039)。
文摘We theoretically investigate the optical absorption coefficient(OAC)in asymmetrical Gaussian potential quantum dots subject to an applied electric field.Confined wave functions together with energies of electron energies in an effective mass approximation framework are obtained.The OAC is expressed according to the iterative method and the compact-density-matrix approach.Based on our results,OAC is sensitively dependent on external electric field together with the incident optical intensity.Additionally,peak shifts into greater energy as the quantum dot radius decrease.Moreover,the parameters of Gaussian potential have a significant influence on the OAC.
基金supported by the National Natural Science Foundation of China(Grant Nos.51271148 and 50971100)the Research Fund of State Key Laboratory of Solidification Processing in China(Grant No.30-TP-2009)+1 种基金the Aeronautic Science Foundation Program of China(Grant No.2012ZF53073)the Doctoral Fund of the Ministry of Education of China(Grant No.20136102110013)
文摘We investigate the effects of shape and single-atom doping on the structural, optical absorption, Raman, and vibra- tional properties of Ag13, Ag12CUl, CUl3, and Cul2Agl clusters by using the (time-dependent) density functional the- ory. The results show that the most stable structures are cuboctahedron (COh) for Ag13 and icosahedron (Ih) for CUl3, Agl2CUlcore, and Cul2Aglsur. In the visible-near infrared optical absorption, the transitions consist of the interband and the intraband transitions. Moreover, red shifts are observed as follows: 1) clusters change from Agl2CUlcore to Ag13 to Ag12Culsur with the same motifs, 2) the shapes of pure Agl3 and Agl2CUlcore clusters change from COh to Ih to decahe- dron (Dh), 3) the shape of Agl2CUlsur clusters changes from Ih to COh to Dh, and 4) the shapes of pure CU13 and Cu12Agl clusters change from Ih to Dh to COb. All of the Raman and vibrational spectra exhibit many significant vibrational modes related to the shapes and the compositions of the clusters. The ranges of vibrational spectra of Ag13, Agl2CUl or CU13, and Cu12Agl clusters become narrower and the vibrational intensities increase as the shape of the clusters changes from Ih to Dh to COh.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774100 and 11474106)
文摘Strain is a powerful tool to engineer the band structure of bilayer phosphorene.The band gap can be decreased by vertical tensile strain or in-plane compressive strain.At a critical strain,the gap is closed and the bilayer phosphorene is turn to be a semi-Dirac semimetal material.If the strain is stronger than the criterion,a band-inversion occurs and it re-happens when the strain is larger than another certain value.For the zigzag bilayer phosphorene ribbon,there are two edge band dispersions and each dispersion curve represents two degenerate edge bands.When the first band-inversion happens,one of the edge band dispersion disappears between the band-cross points while the other survives,and the latter will be eliminated between another pair of band-cross points of the second band-inversion.The optical absorption of bilayer phosphorene is highly polarized along armchair direction.When the strain is turn on,the optical absorption edge changes.The absorption rate for armchair polarized light is decreased by gap shrinking,while that for zigzag polarized light increases.The bandtouch and band-inversion respectively result in the sublinear and linear of absorption curve versus light frequency in low frequency limit.
基金supported by the National Natural Science Foundation of China under Grant No. G050104011004024the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. A0901040110018512026
文摘Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.
基金Supported by the Deanship of Scientific Research of University of Dammam under Grant No 2015134
文摘In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.
基金Project supported by the National Natural Science Foundation of China (Grant No 60777017)the National Basic Research Program of China (Grant No 2007CB310405)+1 种基金China Postdoctoral Scientists Foundation (Grant No 20060390323)K. C.Wong Education Foundation, Hong Kong, China
文摘The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10647132)the Science Foundation from the Education Department of Hunan Province,China (Grant No. 10A100)
文摘An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.
文摘The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.
基金financial support from the National Natural Science Foundation of China(Nos.61874141,11904239)Natural Science Foundation of Hunan Province(Grant Nos.2021JJ40709,2021JJ20080,2022JJ20080)+2 种基金Postgraduate Innovative Project of Central South University(Grant No.2021zzts0056)Open Sharing Found for the Large-scale Instruments and Equipment of Central South Universitysupported in part by the High Performance Computing Center of Central South University。
文摘Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.
基金Project supported by the National Natural Science Foundation of China (Grant No 59972001), the Natural Science Foundation of Anhui Province, China (Grant No 01044901), the Talent Foundation of Anhui Province, China (Grant No 2004Z029), and the Talent Development Foundation of Anhui University, Anhui Province, China.
文摘The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied. The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix with embedded fcc Au nanoparticles with a mean size of 9.8-21.4nm. Spectral analysis suggests that the surface plasma resonance (SPR) absorption peak of Au particles appears at λ=492-537nm. With increasing Au content, absorption peak intensity increases, profile narrows and location redshifts. Theoretical absorption spectra are calculated based on Maxwell-Garnett theory and compared with experimental spectra.
基金Project supported by the Key Basic Research Project of Hebei Province,China(Grant No.12963930D)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2013201250 and B2012402011)
文摘By using the plasma enhanced chemical vapor deposition(PECVD) technique, amorphous silicon oxide films containing nanocrystalline silicon grain(nc-Si O x:H) are deposited, and the bonding configurations and optical absorption properties of the films are investigated. The grain size can be well controlled by varying the hydrogen and oxygen content,and the largest size is obtained when the hydrogen dilution ratio R is 33. The results show that the crystallinity and the grain size of the film first increased and then decreased as R increased. The highest degree of crystallinity is obtained at R = 30.The analyses of bonding characteristics and light absorption characteristics show that the incorporation of hydrogen leads to an increase of overall bonding oxygen content in the film, and the film porosity first increases and then decreases. When R = 30, the film can be more compact, the optical absorption edge of the film is blue shifted, and the film has a lower activation energy.
基金Project supported by the National Natural Science Youth Foundation of China(Grant No.60906042)the National Natural Science Foundation of China(Grant Nos.10974058 and 61178003)
文摘Based on the microscopic nonlocal optical response theory, the intersubband optical absorption properties in AlGa As/Ga As couple quantum wells(CQWs) are investigated for p-polarized states. The numerical results show that spatial nonlocality of optical responses can induce a radiation shift on optical absorption spectra due to nonlocal effects. The dependence of the radiation shift on the CQW structure and the applied electric field is clarified. It is also demonstrated that the maximal radiation shift and the least optical absorbance can be obtained by adopting an appropriate CQW structure and a suitable applied electric field. This work may provide some methods of designing the nanomaterials with controllable nonlocality and observing the spatial nonlocal effects in experiment.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10647132)the Hunan Provincial Education Department Funded Project,China (Grant No. 10A100)
文摘Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.When the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.
基金Project supported by the National High Technology Research and Development of China (Grant No.2009AA063006)the National Natural Science Foundation of China (Grant No. 40905010)the Special Project of Environmental Nonprofit Industry Research,China (Grant No. 201109007)
文摘A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50842028 and 50972012)the National Basic Research Program of China (Grant No 2007CB613301)
文摘Nano metal-particle dispersed glasses are the attractive candidates for nonlinear optical material applications. Au/SiO2 nano-composite thin films with 3 vol% to 65 vol% Au are prepared by inductively coupled plasma sputtering. Au particles as perfect spheres with diameters between 10 nm and 30 nm are uniformly dispersed in the SiO2 matrix. Optical absorption peaks due to the surface plasmon resonance of Au particles are observed. The absorption property is enhanced with the increase of Au content, showing a maximum value in the films with 37 vol% Au. The absorption curves of the Au/SiO2 thin films with 3 vol% to 37 vol% Au accord well with the theoretical optical absorption spectra obtained from Mie resonance theory. Increasing Au content over 37 vol% results in the partial connection of Au particles, whereby the intensity of the absorption peak is weakened and ultimately replaced by the optical absorption of the bulk. The band gap decreases with Au content increasing from 3 vol% to 37 vol % but increases as Au content further increases.
基金Project supported by the Ministry of Higher Education and Scientific Research in Iraq,Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia(UTM RUG Vote No.06-H14)
文摘Based on the Schr ¨odinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients.
基金supported by the National Natural Science Foundation of China(Grant Nos.41275037,41275038,and 41275027)
文摘An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.
基金Project supported by the National Natural Science Foundation of China(Grant No.61274098)
文摘Some realizable structures of double parabolic quantum wells(DPQWs) consisting of Al_xGa_(1-x)As/Al_yGa_(1-y)As are constructed to discuss theoretically the optical absorption due to the intersubband transition of electrons for both symmetric and asymmetric cases with three energy levels of conduction bands. The electronic states in these structures are obtained using a finite element difference method. Based on a compact density matrix approach, the optical absorption induced by intersubband transition of electrons at room temperature is discussed. The results reveal that the peak positions and heights of intersubband optical absorption coefficients(IOACs) of DPQWs are sensitive to the barrier thickness, depending on Al component. Furthermore, external electric fields result in the decrease of peak, and play an important role in the blue shifts of absorption spectra due to electrons excited from ground state to the first and second excited states. It is found that the peaks of IOACs are smaller in asymmetric DPQWs than in symmetric ones. The results also indicate that the adjustable extent of incident photon energy for DPQW is larger than for a square one of a similar size. Our results are helpful in experiments and device fabrication.