A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is di...Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.展开更多
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi...In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
Due to the increasing number of cloud applications,the amount of data in the cloud shows signs of growing faster than ever before.The nature of cloud computing requires cloud data processing systems that can handle hu...Due to the increasing number of cloud applications,the amount of data in the cloud shows signs of growing faster than ever before.The nature of cloud computing requires cloud data processing systems that can handle huge volumes of data and have high performance.However,most cloud storage systems currently adopt a hash-like approach to retrieving data that only supports simple keyword-based enquiries,but lacks various forms of information search.Therefore,a scalable and efficient indexing scheme is clearly required.In this paper,we present a skip list-based cloud index,called SLC-index,which is a novel,scalable skip list-based indexing for cloud data processing.The SLC-index offers a two-layered architecture for extending indexing scope and facilitating better throughput.Dynamic load-balancing for the SLC-index is achieved by online migration of index nodes between servers.Furthermore,it is a flexible system due to its dynamic addition and removal of servers.The SLC-index is efficient for both point and range queries.Experimental results show the efficiency of the SLC-index and its usefulness as an alternative approach for cloud-suitable data structures.展开更多
Through analyzing the needs of seismic data processing and interpretation,a system model based on CSCW is designed.Using the technology of CSCW to build the environment of cooperative work allows the field data acquis...Through analyzing the needs of seismic data processing and interpretation,a system model based on CSCW is designed.Using the technology of CSCW to build the environment of cooperative work allows the field data acquisition to possess the functions of remote real-time guidance by experts and remote real-time processing of the data.The model overcomes the influences and barriers existing in the areas展开更多
Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process en...Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process environment for pre-processing performance can be improved by up to 560.65% from single processing system. Through this, analysis performance in various fields can be improved, and moreover, near-real time service can be achieved in near future.展开更多
The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer s...The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.展开更多
Due to the simplicity and flexibility of the power law process,it is widely used to model the failures of repairable systems.Although statistical inference on the parameters of the power law process has been well deve...Due to the simplicity and flexibility of the power law process,it is widely used to model the failures of repairable systems.Although statistical inference on the parameters of the power law process has been well developed,numerous studies largely depend on complete failure data.A few methods on incomplete data are reported to process such data,but they are limited to their specific cases,especially to that where missing data occur at the early stage of the failures.No framework to handle generic scenarios is available.To overcome this problem,from the point of view of order statistics,the statistical inference of the power law process with incomplete data is established in this paper.The theoretical derivation is carried out and the case studies demonstrate and verify the proposed method.Order statistics offer an alternative to the statistical inference of the power law process with incomplete data as they can reformulate current studies on the left censored failure data and interval censored data in a unified framework.The results show that the proposed method has more flexibility and more applicability.展开更多
The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fu...The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fulfill dynamic demands of information sharing between government agencies.Motivated by blockchain and data mining,a data-driven framework is proposed for IAGIS in this paper.Firstly,the blockchain is used as the core to design the whole framework for monitoring and preventing leakage and abuse of government information,in order to guarantee information security.Secondly,a four-layer architecture is designed for implementing the proposed framework.Thirdly,the classical data mining algorithms PageRank and Apriori are applied to dynamically design smart contracts for information sharing,for the purposed of flexibly adjusting the information sharing strategies according to the practical demands of government agencies for public management and public service.Finally,a case study is presented to illustrate the operation of the proposed framework.展开更多
Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As...Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As part of its on-going efforts to establish a centralized scientific data management platform,HLS is in the process of developing a test sys-tem that covers the entire lifecycle of scientific data,including data generation,acquisition,processing,analysis,and de-struction.However,the instruments used in the soft X-ray microscopy experimental station rely on commercial propriet-ary software for data acquisition and processing.We developed a semi-automatic data acquisition program to facilitate the integration of soft X-ray microscopy stations into a centralized scientific data management platform.Additionally,we cre-ated an online data processing platform to assist users in analyzing their scientific data.The system we developed and de-ployed meets the design requirements,successfully integrating the soft X-ray microscopy station into the full lifecycle management of scientific data.展开更多
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
文摘Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.
文摘In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
基金Projects(61363021,61540061,61663047)supported by the National Natural Science Foundation of ChinaProject(2017SE206)supported by the Open Foundation of Key Laboratory in Software Engineering of Yunnan Province,China
文摘Due to the increasing number of cloud applications,the amount of data in the cloud shows signs of growing faster than ever before.The nature of cloud computing requires cloud data processing systems that can handle huge volumes of data and have high performance.However,most cloud storage systems currently adopt a hash-like approach to retrieving data that only supports simple keyword-based enquiries,but lacks various forms of information search.Therefore,a scalable and efficient indexing scheme is clearly required.In this paper,we present a skip list-based cloud index,called SLC-index,which is a novel,scalable skip list-based indexing for cloud data processing.The SLC-index offers a two-layered architecture for extending indexing scope and facilitating better throughput.Dynamic load-balancing for the SLC-index is achieved by online migration of index nodes between servers.Furthermore,it is a flexible system due to its dynamic addition and removal of servers.The SLC-index is efficient for both point and range queries.Experimental results show the efficiency of the SLC-index and its usefulness as an alternative approach for cloud-suitable data structures.
文摘Through analyzing the needs of seismic data processing and interpretation,a system model based on CSCW is designed.Using the technology of CSCW to build the environment of cooperative work allows the field data acquisition to possess the functions of remote real-time guidance by experts and remote real-time processing of the data.The model overcomes the influences and barriers existing in the areas
基金supported by the Sharing and Diffusion of National R&D Outcome funded by the Korea Institute of Science and Technology Information
文摘Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process environment for pre-processing performance can be improved by up to 560.65% from single processing system. Through this, analysis performance in various fields can be improved, and moreover, near-real time service can be achieved in near future.
文摘The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.
基金supported by the National Natural Science Foundation of China(51775090)。
文摘Due to the simplicity and flexibility of the power law process,it is widely used to model the failures of repairable systems.Although statistical inference on the parameters of the power law process has been well developed,numerous studies largely depend on complete failure data.A few methods on incomplete data are reported to process such data,but they are limited to their specific cases,especially to that where missing data occur at the early stage of the failures.No framework to handle generic scenarios is available.To overcome this problem,from the point of view of order statistics,the statistical inference of the power law process with incomplete data is established in this paper.The theoretical derivation is carried out and the case studies demonstrate and verify the proposed method.Order statistics offer an alternative to the statistical inference of the power law process with incomplete data as they can reformulate current studies on the left censored failure data and interval censored data in a unified framework.The results show that the proposed method has more flexibility and more applicability.
基金Supported by the Project of Guangdong Science and Technology Department(2020B010166005)the Post-Doctoral Research Project(Z000158)+2 种基金the Ministry of Education Social Science Fund(22YJ630167)the Fund project of Department of Science and Technology of Guangdong Province(GDK TP2021032500)the Guangdong Philosophy and Social Science(GD22YYJ15).
文摘The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fulfill dynamic demands of information sharing between government agencies.Motivated by blockchain and data mining,a data-driven framework is proposed for IAGIS in this paper.Firstly,the blockchain is used as the core to design the whole framework for monitoring and preventing leakage and abuse of government information,in order to guarantee information security.Secondly,a four-layer architecture is designed for implementing the proposed framework.Thirdly,the classical data mining algorithms PageRank and Apriori are applied to dynamically design smart contracts for information sharing,for the purposed of flexibly adjusting the information sharing strategies according to the practical demands of government agencies for public management and public service.Finally,a case study is presented to illustrate the operation of the proposed framework.
基金supported by the Fundamental Research Funds for the Central Universities(WK2310000102)。
文摘Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As part of its on-going efforts to establish a centralized scientific data management platform,HLS is in the process of developing a test sys-tem that covers the entire lifecycle of scientific data,including data generation,acquisition,processing,analysis,and de-struction.However,the instruments used in the soft X-ray microscopy experimental station rely on commercial propriet-ary software for data acquisition and processing.We developed a semi-automatic data acquisition program to facilitate the integration of soft X-ray microscopy stations into a centralized scientific data management platform.Additionally,we cre-ated an online data processing platform to assist users in analyzing their scientific data.The system we developed and de-ployed meets the design requirements,successfully integrating the soft X-ray microscopy station into the full lifecycle management of scientific data.