该文提出一种基于非负张量分解的高光谱图像压缩算法。首先将高光谱图像的每个谱段进行2维离散5/3小波变换,消除高光谱图像的空间冗余。然后将所有谱段的每级小波变换的4个小波子带看作为4个张量。对每个小波子带张量采用改进HALS(Hi...该文提出一种基于非负张量分解的高光谱图像压缩算法。首先将高光谱图像的每个谱段进行2维离散5/3小波变换,消除高光谱图像的空间冗余。然后将所有谱段的每级小波变换的4个小波子带看作为4个张量。对每个小波子带张量采用改进HALS(Hierarchical Alternating Least Squares)算法进行非负分解,来消除光谱冗余和空间残余冗余,同时保护了光谱信息。最后,将分解的因子矩阵进行熵编码。实验结果表明,该文提出的压缩算法具有良好压缩性能,在压缩比32:1-4:1范围内,平均信噪比高于40dB,与传统高光谱图像压缩算法比较,平均峰值信噪比提高了1.499dB。有效地提高了高光谱图像压缩算法的压缩性能和保护了光谱信息。展开更多
传统的基于统计的子空间学习算法如主成分分析,通过学习只能得到一系列特征脸,忽略了人脸识别中重要的局部信息(如眼睛、鼻子)。而利用到类别信息的算法如线性判别分析,也会因为小样本问题而有所影响。为了解决这些问题,结合二维偏最小...传统的基于统计的子空间学习算法如主成分分析,通过学习只能得到一系列特征脸,忽略了人脸识别中重要的局部信息(如眼睛、鼻子)。而利用到类别信息的算法如线性判别分析,也会因为小样本问题而有所影响。为了解决这些问题,结合二维偏最小二乘与非负矩阵分解的非负性思想提出二维非负偏最小二乘(Two-Dimensional Nonnegative Partial Least Squares,2DNPLS)算法。其核心思想是在提取人脸特征时加入了非负性约束,使得2DNPLS不仅拥有偏最小二乘算法加入类别信息带来的分类效果,还保留了图像矩阵的内部结构信息,而且还使得到的基矩阵具有非负的局部的可解释性。在ORL,Yale人脸库中的实验结果表明,该算法从时间上和识别率上均优于人脸识别的主流算法。展开更多
文摘该文提出一种基于非负张量分解的高光谱图像压缩算法。首先将高光谱图像的每个谱段进行2维离散5/3小波变换,消除高光谱图像的空间冗余。然后将所有谱段的每级小波变换的4个小波子带看作为4个张量。对每个小波子带张量采用改进HALS(Hierarchical Alternating Least Squares)算法进行非负分解,来消除光谱冗余和空间残余冗余,同时保护了光谱信息。最后,将分解的因子矩阵进行熵编码。实验结果表明,该文提出的压缩算法具有良好压缩性能,在压缩比32:1-4:1范围内,平均信噪比高于40dB,与传统高光谱图像压缩算法比较,平均峰值信噪比提高了1.499dB。有效地提高了高光谱图像压缩算法的压缩性能和保护了光谱信息。
文摘传统的基于统计的子空间学习算法如主成分分析,通过学习只能得到一系列特征脸,忽略了人脸识别中重要的局部信息(如眼睛、鼻子)。而利用到类别信息的算法如线性判别分析,也会因为小样本问题而有所影响。为了解决这些问题,结合二维偏最小二乘与非负矩阵分解的非负性思想提出二维非负偏最小二乘(Two-Dimensional Nonnegative Partial Least Squares,2DNPLS)算法。其核心思想是在提取人脸特征时加入了非负性约束,使得2DNPLS不仅拥有偏最小二乘算法加入类别信息带来的分类效果,还保留了图像矩阵的内部结构信息,而且还使得到的基矩阵具有非负的局部的可解释性。在ORL,Yale人脸库中的实验结果表明,该算法从时间上和识别率上均优于人脸识别的主流算法。