期刊文献+
共找到33,047篇文章
< 1 2 250 >
每页显示 20 50 100
Flexible Strain Sensors with Ultra‑High Sensitivity and Wide Range Enabled by Crack‑Modulated Electrical Pathways
1
作者 Yunzhao Bai Yunlei Zhou +6 位作者 Xuanyu Wu Mengfei Yin Liting Yin Shiyuan Qu Fan Zhang Kan Li YongAn Huang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期246-264,共19页
This study presents a breakthrough in flexible strain sensor technology with the development of an ultrahigh sensitivity and wide-range sensor,addressing the critical challenge of reconciling sensitivity with measurem... This study presents a breakthrough in flexible strain sensor technology with the development of an ultrahigh sensitivity and wide-range sensor,addressing the critical challenge of reconciling sensitivity with measurement range.Inspired by the structure of bamboo slips,we introduce a novel approach that utilises liquid metal to modulate the electrical pathways within a cracked platinum fabric electrode.The resulting sensor demonstrates a gauge factor greater than 108 and a strain measurement capability exceeding 100%.The integration of patterned liquid metal enables customisable tuning of the sensor’s response,while the porous fabric structure ensures superior comfort and air permeability for the wearer.Our design not only optimises the sensor’s performance but also enhances the electrical stability that is essential for practical applications.Through systematic investigation,we reveal the intrinsic mechanisms governing the sensor’s response,offering valuable insights for the design of wearable strain sensors.The sensor’s exceptional performance across a spectrum of applications,from micro-strain to large-strain detection,highlights its potential for a wide range of real-world uses,demonstrating a significant advancement in the field of flexible electronics. 展开更多
关键词 Flexible strain sensor FABRIC crack Response regulation Epidermal device
在线阅读 下载PDF
Experimental study on failure precursory characteristics and moisture content effect of pre-cracked rocks under graded cyclic loading and unloading
2
作者 Wei Zhang Dongxiao Zhang +1 位作者 Weiyao Guo Baoliang Zhang 《International Journal of Mining Science and Technology》 2025年第2期249-264,共16页
It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and ... It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces. 展开更多
关键词 Damage mechanisms Pre-cracked rocks crack propagation Water-rock interaction Graded cyclic loading and unloading
在线阅读 下载PDF
Experimental study of the damage characteristics of rocks containing non-penetrating cracks under cyclic loading 被引量:1
3
作者 Jun Xu Xiaochun Xiao +3 位作者 Lu Ma Sen Luo Jiaxu Jin Baijian Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期197-210,共14页
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ... The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures. 展开更多
关键词 Damage characteristics Constitutive model Fissured rocks Non-penetrating crack Cyclic loading
在线阅读 下载PDF
Analytical solution for the effective elastic properties of rocks with the tilted penny-shaped cracks in the transversely isotropic background
4
作者 Zheng-Qian Ma Xing-Yao Yin +2 位作者 Zhao-Yun Zong Yuan-Yuan Tan Ya-Ming Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期221-243,共23页
Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with th... Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock. 展开更多
关键词 Effective elastic property Tilted crack Transverse isotropy Analytical solution crack opening displacement
在线阅读 下载PDF
Solid-state NMR reveals that oxygen tri-clusters make glass highly crackresistant
5
作者 Zhiwu Yu 《Magnetic Resonance Letters》 2024年第2期77-78,共2页
In a recent paper,advanced solid-state nuclear magnetic resonance(SSNMR)technology was employed to reveal the underlying mechanism contributing to the high hardness and exceptional resistance to fragmentation observed... In a recent paper,advanced solid-state nuclear magnetic resonance(SSNMR)technology was employed to reveal the underlying mechanism contributing to the high hardness and exceptional resistance to fragmentation observed in certain special glasses[1].This study utilized SSNMR to analyze the atomic-scale internal structure of glass,enabling the quantification of the fraction of three-coordinated oxygen([^((3))O]).The research findings demonstrate a quantitative relationship between[^((3))O]and the resistance of glass to crack initiation. 展开更多
关键词 crack resistance GLASS
在线阅读 下载PDF
Development and Catalytic Cracking Performance of Ultrastable Y Zeolite Rich in Secondary Pores
6
作者 Li Jiaxing Wang Shengji +3 位作者 Sha Hao Wang Juan Zhou Lingping Wang Lixia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期13-21,共9页
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t... A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity. 展开更多
关键词 GAS-PHASE ultra-stable ZEOLITE CATALYST catalytic cracking
在线阅读 下载PDF
Brønsted-acid sites induced photocatalytic cracking of low-polarity polyethylene plastics
7
作者 Qianyou Wen Quan Zhang +6 位作者 Zhengzheng Liu Huining Wang Shuya Hao Fan Zhang Lijuan Zhang Qing Han Gengfeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期509-515,共7页
Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical fun... Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes. 展开更多
关键词 Photocatalytic cracking POLYETHYLENE Surface phosphorylation Bronsted-acid site Carbon conversion
在线阅读 下载PDF
A molecular insight into coke formation process of vacuum residue in thermal cracking reaction
8
作者 Ji-Guang Li Xin Guo Huan-Di Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2130-2138,共9页
Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with va... Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with various reaction time were performed to evaluate the coke formation process.The total yields of ideal components including naphtha,atmospheric gas oil(AGO)and vacuum gas oil(VGO)of thermal cracking reactions increased from 10.89%to 40.81%,and the conversion ratios increased from8.05%to 43.33%with increasing the reaction time from 10 to 70 min.The asphaltene content increased from 12.14%to a maximum of 22.39%and then decreased,and this maximum of asphaltene content occurred at the end of the coking induction period.The asphaltenes during the coking induction period,at the end and after coking induction period of those tested thermal cracking reactions were characterized to disclose the structure changing rules for coke formation process,and the coke formation pathways were discussed to reveal the coke formation process at molecular level. 展开更多
关键词 Vacuum residue Thermal cracking ASPHALTENE Coking induction period SULFUR NITROGEN
在线阅读 下载PDF
Preparation and Electrochemical Performance Study of Catalytic Cracking Oil Slurry-based Porous Carbon Materials
9
作者 Liu Qi Zhao Gaiju +3 位作者 Liu Xingge Yu Hewei Sun Rongfeng Geng Wenguang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期34-45,共12页
Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industr... Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries. 展开更多
关键词 catalytic cracking slurry porous carbon SUPERCAPACITOR KOH activation
在线阅读 下载PDF
Crack propagation and damage evolution of metallic cylindrical shells under internal explosive loading
10
作者 Yusong Luo Weibing Li +2 位作者 Junbao Li Wenbin Li Xiaoming Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期133-146,共14页
This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ... This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes. 展开更多
关键词 Internal explosive loading Failure criterion crack propagation Damage evolution Freeze-recovery test
在线阅读 下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
11
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 Magnetic field Sulfate-reducing bacteria Film layer Stress corrosion cracking Oil and gas pipelines
在线阅读 下载PDF
Regulating metal-acid double site balance on mesoporous SiO_(2)-Al_(2)O_(3) composite oxide for supercritical n-decane cracking
12
作者 Liu-Ling Chen Jun Zhang +5 位作者 Chun-Guang Li Li-Qun Fei Bo Wang Chen-Qi Zhang Yi Jiao Jian-Li Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2881-2891,共11页
The balance between metal and acid sites directly affects the preparation of high-performance cracking catalysts with high heat sink and low coking.Nevertheless,how to control acid-metal sites balance and its relation... The balance between metal and acid sites directly affects the preparation of high-performance cracking catalysts with high heat sink and low coking.Nevertheless,how to control acid-metal sites balance and its relationship with cracking performance are reported scarcely.In this work,a series of Pt/Al_(2)O_(3)-SiO_(2) dual sites catalysts with different metal to acid active sites ratio(C_(M)/C_(SA))were constructed by ethanolassisted impregnation method and the impact on n-decane cracking under supercritical conditions was systematically and deeply investigated.The results showed that the conversion and carbon deposition increased gradually with varied C_(M)/C_(SA)and reached the balance at C_(M)/C_(SA)of 0.13.The proper ratio C_(M)/C_(SA)(0.13)can balance the deep dehydrogenation coking over metal active sites and high heat sink of cracking over acid active sites,the chemical heat sink reaches amazing 1.75 MJ/kg and carbon deposition is only22.03 mg/cm^(2) at 750℃.Meanwhile,the few metal sites at low C_(M)/C_(SA)and the few strong acid sites at high C_(M)/C_(SA)are the main factors limiting the cracking activity.Low C_(M)/C_(SA)limit the activation of C-H bond and deep dehydrogenation of coking precursor,resulting in relative low cracking activity and carbon deposition,while high C_(M)/C_(SA)limit the activation of C-C bond and increase the deep dehydrogenation.In this contribution,design and construction of metal-acid dual sites can not only provide the technical solution for the preparation of high heat sink and low coking cracking catalyst,but also deepen the understanding of the cracking path of hydrocarbon fuel. 展开更多
关键词 Metal-acid dual sites balance Catalytic cracking Hydrocarbon fuels Chemical heat sink Carbon deposition
在线阅读 下载PDF
Automatic Pavement Crack Detection Based on Octave Convolution Neural Network with Hierarchical Feature Learning
13
作者 Minggang Xu Chong Li +1 位作者 Ying Chen Wu Wei 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期422-435,共14页
Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine ... Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine details and global structures,respectively.The output features obtained from different convolutional layers can be combined to represent information about both high-frequency and low-frequency signals.In this paper,we propose an encoder-decoder framework called octave hierarchical network(Octave-H),which is based on the U-Network(U-Net)architec-ture and utilizes an octave convolutional neural network and a hierarchical feature learning module for performing crack detection.The proposed octave convolution is capable of extracting multi-fre-quency feature maps,capturing both fine details and global cracks.We propose a hierarchical feature learning module that merges multi-frequency-scale feature maps with different levels(high and low)of octave convolutional layers.To verify the superiority of the proposed Octave-H,we employed the CrackForest dataset(CFD)and AigleRN databases to evaluate this method.The experimental results demonstrate that Octave-H outperforms other algorithms with satisfactory performance. 展开更多
关键词 automated pavement crack detection octave convolutional network hierarchical feature multiscale MULTIFREQUENCY
在线阅读 下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction
14
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking Product yield Data-driven modeling Multiscale prediction Data decomposition Convolution neural network
在线阅读 下载PDF
Evaluation of the injection and plugging ability of a novel epoxy resin in cement cracks
15
作者 Guang-Yao Leng Wei Yan +6 位作者 Hai-Mu Ye Er-Dong Yao Ji-Bin Duan Zheng-Xian Xu Ke-Pei Li Jing-Ru Zhang Zhong Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1211-1220,共10页
Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliabl... Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement. 展开更多
关键词 Sustained casing pressure Epoxy resin sealant Curing agent Viscosity reducer Mechanical properties crack sealing
在线阅读 下载PDF
Preparation of Fe-Al Hollow Nano-spherical Catalyst and its Application in Catalytic Cracking of Ethane for Carbon Nanotube Production
16
作者 Liu Bei Wang Taoxiang +3 位作者 Li Kang Sun Hongman Wang Youhe Yan Zifeng 《China Petroleum Processing & Petrochemical Technology》 CSCD 2024年第4期39-48,共10页
Fe-Al catalysts with hollow nano-spherical structures were synthesized following the hard template method using self-made carbon spheres as templates.The catalytic performance of these catalysts in the production of c... Fe-Al catalysts with hollow nano-spherical structures were synthesized following the hard template method using self-made carbon spheres as templates.The catalytic performance of these catalysts in the production of carbon nanotubes(CNTs)was evaluated through ethane catalytic cracking on a fixed bed reactor.Furthermore,the influence of these hollow nanospheres on the yield and quality of CNTs was investigated.The results showed that compared to the irregular-shaped catalyst synthesized by coprecipitation and the catalyst with micro-spherical structures prepared by the impregnation method,the Fe-Al hollow nano-spherical catalysts exhibited significantly enhanced specific surface area and pore volume,reaching 236 m^(2)/g and 0.77 cm^(3)/g,respectively.At a reaction temperature of 700℃ and an ethane feed rate of 90 mL/min,the CNTs yield of Fe-Al hollow nano-spherical catalyst reached as high as 48.6 gCNT/gcat,which was 1.8 and 4.6 times higher than the yield of irregular-shaped(27.7 gCNT/gcat)and micro-spherical(10.5 gCNT/gcat)catalysts,respectively.This was mainly attributed to the hollow cavity structure of Fe-Al catalyst providing sufficient space for the CNTs growth.As a result,the blockage of catalyst internal pores was prevented by the formed CNTs,which isolated ethane molecules from the active sites and lead to catalyst deactivation.Furthermore,the CNTs synthesized by Fe-Al hollow nano-spherical catalyst exhibited a uniform diameter distribution and a higher degree of graphitization. 展开更多
关键词 Fe-Al oxides carbon nanotubes hollow nanospheres ETHANE catalytic cracking
在线阅读 下载PDF
Joint inversion of crack properties of tight carbonates from electrical conductivity and ultrasonic velocity
17
作者 Lin Zhang Li Gao +2 位作者 Jing Ba Jose M.Carcione Jin-Yi Min 《Petroleum Science》 CSCD 2024年第6期4010-4024,共15页
Understanding the effects of cracks on the elastic and electrical properties of tight carbonates is crucial for the exploration and development of deep and ultra-deep carbonate reservoirs.In this work,the porosity,ele... Understanding the effects of cracks on the elastic and electrical properties of tight carbonates is crucial for the exploration and development of deep and ultra-deep carbonate reservoirs.In this work,the porosity,electrical conductivity and ultrasonic velocities of two brine-saturated carbonate samples(where the pore space is dominated by cracks)are measured jointly at different effective pressures(5-90 MPa),as well as the velocities with saturating nitrogen at the same pressure conditions.The results show non-linear changes in the measured values,indicating a correlation with the presence of cracks.To analyze the pressure-dependent elastic and electrical properties,an approach combining a multiphase Kachanov model with a multiphase reformulated electrical differential effective medium(REDEM)model is proposed.This approach agrees well with the pressure-dependent experimental results of brine-saturated carbonate samples.The crack aspect ratio spectra are estimated using the experimental porosity as a constraint to improve the accuracy of the inverted crack geometry.The spectra from the elastic(electrical)inversion are input into the multiphase REDEM(Kachanov)model to predict the electrical conductivity(wave velocities).Comparisons with laboratory measurements show the ability of the proposed approach to estimate elastic wave velocities from the electrical conductivity using the inverted crack geometry,and vice versa. 展开更多
关键词 Tight carbonate rocks crack geometry Jointelastic-electrical properties POROSITY Elastic velocities Electrical conductivity
在线阅读 下载PDF
Extraction of the key infrared radiation temperature features concerning stress and crack evolution of loaded rocks
18
作者 Wei Liu Liqiang Ma +4 位作者 Michel Jaboyedoff Marc-Henri Derron Qiangqiang Gao Fengchang Bu Hai Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1059-1081,共23页
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ... The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters. 展开更多
关键词 Infrared radiation(IR) Temperature drift Spatial background noise Rock fracture Average infrared radiation temperature(AIRT) Heat dissipation of crack evolution(HDCE)
在线阅读 下载PDF
装药结构中纵向气隙对炸药爆轰输出性能的影响
19
作者 郭文灿 张志强 +2 位作者 邓顺益 黄文斌 裴红波 《爆炸与冲击》 北大核心 2025年第4期33-40,共8页
为阐明装药结构中纵向气隙对炸药爆轰输出性能的影响,基于激光照明结合超高速分幅成像技术研究了HMX基炸药爆轰正向驱动及滑移驱动下钢板的变形及损伤情况,并通过密排光纤测速技术测量了钢板的运动速度,实现了气隙影响下钢板附带损失的... 为阐明装药结构中纵向气隙对炸药爆轰输出性能的影响,基于激光照明结合超高速分幅成像技术研究了HMX基炸药爆轰正向驱动及滑移驱动下钢板的变形及损伤情况,并通过密排光纤测速技术测量了钢板的运动速度,实现了气隙影响下钢板附带损失的量化表征。结果表明,纵向气隙宽度为0.05、0.10和0.20 mm时,爆轰正向驱动下,钢板的运动模式发生了显著变化,中心点的运动趋势由阶跃式上升转变为斜波式上升,且爆轰波的超前时间大幅度增加,钢板有明显的变形和破坏击穿现象;爆轰滑移驱动下,钢板的运动模式和爆轰波的超前时间基本不变,钢板没有出现明显的变形和击穿现象。爆轰正向驱动下,前驱冲击波和两侧爆轰波构成的楔形波系是造成底部钢板破坏击穿的关键;爆轰滑移驱动下,前驱冲击波和爆轰波作用于侧面钢板的动量分量较小,不会造成明显的变形和损伤。 展开更多
关键词 气隙 爆轰 炸药 裂纹
在线阅读 下载PDF
基于贝叶斯修正的锈蚀RC结构保护层开裂时间预测
20
作者 黄天立 李群 +3 位作者 陈龙 陈华鹏 阳波 何益斌 《中南大学学报(自然科学版)》 北大核心 2025年第2期575-585,共11页
腐蚀电流密度的测量存在误差,且物理模型预测腐蚀电流密度时具有较大的不确定性。为了量化物理模型的不确定性,准确预测钢筋非均匀锈蚀引起的钢筋混凝土(RC)结构保护层开裂时间,提出一种基于贝叶斯修正的锈蚀RC结构保护层开裂时间预测... 腐蚀电流密度的测量存在误差,且物理模型预测腐蚀电流密度时具有较大的不确定性。为了量化物理模型的不确定性,准确预测钢筋非均匀锈蚀引起的钢筋混凝土(RC)结构保护层开裂时间,提出一种基于贝叶斯修正的锈蚀RC结构保护层开裂时间预测方法。首先,采用贝叶斯方法结合实测数据推断RC结构腐蚀开裂过程中的腐蚀电流密度物理模型中的参数,采用马尔科夫蒙特卡罗方法中的Metropolis-Hastings算法进行采样,得到参数的后验分布;然后,利用后验分布传递参数的不确定性,得到腐蚀电流密度预测模型;最后,利用锈蚀产物质量相等将非均匀腐蚀的钢筋锈蚀椭圆模型转换成均匀腐蚀的厚壁圆筒模型来计算混凝土保护层中的应力,通过钢筋损失量与腐蚀电流密度预测值之间的关系,预测混凝土保护层开裂时间。通过2个试验试件验证所提方法预测锈蚀RC结构保护层开裂时间的有效性。研究结果表明:基于贝叶斯修正后的腐蚀电流密度预测模型能准确地预测腐蚀电流密度,且能够有效地预测锈蚀RC结构保护层开裂时间,开裂时间的预测值与实测值之间的相对误差小于5%。 展开更多
关键词 锈蚀钢筋混凝土结构 保护层开裂 开裂时间 非均匀锈蚀 贝叶斯方法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部