A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi...A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.展开更多
Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To...Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.展开更多
On the basis of upper bound theorem, non-associated flow rule and non-linear failure criterion were considered together.The modified shear strength parameters of materials were obtained with the help of the tangent me...On the basis of upper bound theorem, non-associated flow rule and non-linear failure criterion were considered together.The modified shear strength parameters of materials were obtained with the help of the tangent method. Employing the virtual power principle and strength reduction technique, the effects of dilatancy of materials, non-linear failure criterion, pore water pressure,surface loads and buried depth, on the stability of shallow tunnel were studied. In order to validate the effectiveness of the proposed approach, the solutions in the present work agree well with the existing results when the non-associated flow rule is reduced to the associated flow rule and the non-linear failure criterion is degenerated to the linear failure criterion. Compared with dilatancy of materials, the non-linear failure criterion exerts greater impact on the stability of shallow tunnels. The safety factor of shallow tunnels decreases and the failure surface expands outward when the dilatancy coefficient decreases. While the increase of nonlinear coefficient, the pore water pressure coefficient, the surface load and the buried depth results in the small safety factor. Therefore, the dilatancy as well as non-linear failure criterion should be taken into account in the design of shallow tunnel supporting structure. The supporting structure must be reinforced promptly to prevent potential mud from gushing or collapse accident in the areas with abundant pore water, large surface load or buried depth.展开更多
In order to analyze mechanism of casing damage,the uniaxial compression experiment and creep experiment of interbedded mudstone samples from Sanan development area of Daqing Oilfield under different water contents wer...In order to analyze mechanism of casing damage,the uniaxial compression experiment and creep experiment of interbedded mudstone samples from Sanan development area of Daqing Oilfield under different water contents were carried out.The changes of the mudstone's mechanical parameters and creep characteristics with the increment of water saturation were studied.The results indicate that the rock strength and elastic modulus decrease rapidly with the increment of water content,at the same time,the creep strain and creep strain rate of steady state increase with the increment of water content,and also the steady state creep strain rate is enhanced with the increment of deviatoric stress.Through the creep characteristic curves,a non-linear creep constitutive equation of mudstone considering the change of water contents is established,which will be used in future numerical analysis.展开更多
In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm...In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.展开更多
In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the...In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the stabilization of planar underactuated manipulators without gravity is a great challenge since the system includes a second order nonholonomic constraint and most classical control methods are not suitable for this kind of system.Furthermore,the complexity of the truss-like structure results in tremendous difficulty of computational complicacy and high nonlinearity during dynamic modelling in addition to controller design.It is paramount to solve these difficulties for UCTM's future applications.To solve the above difficulties,this paper presents a dynamic modelling method for UCTM and a trajectory tracking control method based on partial feedback linearization(PFL)that fulfills the control goal of moving UCTM from its original position to a desired position by tracking a given trajectory of the joint angles.To achieve this,a model equivalent method is proposed to make UCTM equivalent with a three-link manipulator in the sense of dynamic behavior.Then the Lagrangian equation combined with complex vector method is proposed in the dynamic modelling process of UCTM,which simplifies the derivation procedure.Based on the established dynamic model,a coordinate transformation method is proposed to transform the control force matrix into the conventional form of an underactuated system,so that the control force can be separated from the unactuated term.The PFL method in combination with the LQR control method is then proposed to realize the targets that the joint angles can track given desired trajectory.Simulation experiments are conducted to verify the correctness and effectiveness of the proposed methods.展开更多
A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal def...A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.展开更多
A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed w...A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.展开更多
Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal wi...Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor a was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical.展开更多
Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to ident...Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to identify/recover the channels and the sources. BSS/ICA of nonlinear mixing models are difficult problems. For instance, the post-nonlinear model has been studied by several authors. It is noticed that in most cases, the proposed models are always with an invertible mixing. According to this fact there is an interesting question, how about the situation of the non-invertible non-linear mixing in BSS or ICA? A new simple non-linear mixing model is proposed with a kind of non-invertible mixing, the folding mixing, and method to identify its channel, blindly.展开更多
Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential i...Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.展开更多
Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.T...Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea...Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.展开更多
Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new ...Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new century. In order to get a deep insight into this field, some notes on the direct searches for non-smooth optimization problems are made. The global convergence vs. local convergence and their influences on expected solutions for simulation-based stochastic optimization are pointed out. The sufficient and simple decrease criteria for step acceptance are analyzed, and why simple decrease is enough for globalization in direct searches is identified. The reason to introduce the positive spanning set and its usage in direct searches is explained. Other topics such as the generalization of direct searches to bound, linear and non-linear constraints are also briefly discussed.展开更多
基金Project(Z132012)supported by the Second Five Technology-based in Science and Industry Bureau of ChinaProject(YWF1103Q062)supported by the Fundemental Research Funds for the Central Universities in China
文摘A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.
基金Project(K117K06225)supported by JSPS KAKENHI,Japan
文摘Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.
基金Project(2013CB036004) supported by the National Basic Research Program of ChinaProjects(51178468,51378510) supported by the National Natural Science Foundation of ChinaProject(CX2013B077) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘On the basis of upper bound theorem, non-associated flow rule and non-linear failure criterion were considered together.The modified shear strength parameters of materials were obtained with the help of the tangent method. Employing the virtual power principle and strength reduction technique, the effects of dilatancy of materials, non-linear failure criterion, pore water pressure,surface loads and buried depth, on the stability of shallow tunnel were studied. In order to validate the effectiveness of the proposed approach, the solutions in the present work agree well with the existing results when the non-associated flow rule is reduced to the associated flow rule and the non-linear failure criterion is degenerated to the linear failure criterion. Compared with dilatancy of materials, the non-linear failure criterion exerts greater impact on the stability of shallow tunnels. The safety factor of shallow tunnels decreases and the failure surface expands outward when the dilatancy coefficient decreases. While the increase of nonlinear coefficient, the pore water pressure coefficient, the surface load and the buried depth results in the small safety factor. Therefore, the dilatancy as well as non-linear failure criterion should be taken into account in the design of shallow tunnel supporting structure. The supporting structure must be reinforced promptly to prevent potential mud from gushing or collapse accident in the areas with abundant pore water, large surface load or buried depth.
基金Project(2002CB412704) supported by the Major State Basic Research Development Program of China
文摘In order to analyze mechanism of casing damage,the uniaxial compression experiment and creep experiment of interbedded mudstone samples from Sanan development area of Daqing Oilfield under different water contents were carried out.The changes of the mudstone's mechanical parameters and creep characteristics with the increment of water saturation were studied.The results indicate that the rock strength and elastic modulus decrease rapidly with the increment of water content,at the same time,the creep strain and creep strain rate of steady state increase with the increment of water content,and also the steady state creep strain rate is enhanced with the increment of deviatoric stress.Through the creep characteristic curves,a non-linear creep constitutive equation of mudstone considering the change of water contents is established,which will be used in future numerical analysis.
文摘In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.
基金Projects(51275107,52005124)supported by the National Natural Science Foundation of China。
文摘In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the stabilization of planar underactuated manipulators without gravity is a great challenge since the system includes a second order nonholonomic constraint and most classical control methods are not suitable for this kind of system.Furthermore,the complexity of the truss-like structure results in tremendous difficulty of computational complicacy and high nonlinearity during dynamic modelling in addition to controller design.It is paramount to solve these difficulties for UCTM's future applications.To solve the above difficulties,this paper presents a dynamic modelling method for UCTM and a trajectory tracking control method based on partial feedback linearization(PFL)that fulfills the control goal of moving UCTM from its original position to a desired position by tracking a given trajectory of the joint angles.To achieve this,a model equivalent method is proposed to make UCTM equivalent with a three-link manipulator in the sense of dynamic behavior.Then the Lagrangian equation combined with complex vector method is proposed in the dynamic modelling process of UCTM,which simplifies the derivation procedure.Based on the established dynamic model,a coordinate transformation method is proposed to transform the control force matrix into the conventional form of an underactuated system,so that the control force can be separated from the unactuated term.The PFL method in combination with the LQR control method is then proposed to realize the targets that the joint angles can track given desired trajectory.Simulation experiments are conducted to verify the correctness and effectiveness of the proposed methods.
基金Project(2009318000046) supported by the Western Transport Technical Program of the Ministry of Transport,China
文摘A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.
基金Foundation item: Project(2009-K3-2) supported by the Ministry of Housing and Urban-Rural Development of China
文摘A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.
基金Project(2012CB026200)supported by the National Basic Research Program of ChinaProjects(50978055,50878048)supported by the National Natural Science Foundation of China
文摘Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor a was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical.
基金This project was supported by the Talent Foundation of Anhui Province(2004Z025)
文摘Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to identify/recover the channels and the sources. BSS/ICA of nonlinear mixing models are difficult problems. For instance, the post-nonlinear model has been studied by several authors. It is noticed that in most cases, the proposed models are always with an invertible mixing. According to this fact there is an interesting question, how about the situation of the non-invertible non-linear mixing in BSS or ICA? A new simple non-linear mixing model is proposed with a kind of non-invertible mixing, the folding mixing, and method to identify its channel, blindly.
基金Project(51979087)supported by the National Natural Science Foundation of ChinaProject(BK20180776)supported by the Jiangsu Natural Science Foundation,ChinaProject(202006710002)supported by the China Scholarship Council。
文摘Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.
基金Projects(61001188,1161140319)supported by the National Natural Science Foundation of ChinaProject(2012ZX03001034)supported by the National Science and Technology Major ProjectProject(YETP1202)supported by Beijing Higher Education Young Elite Teacher Project,China
文摘Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
文摘Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.
基金supported by the Key Foundation of Southwest University for Nationalities(09NZD001).
文摘Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new century. In order to get a deep insight into this field, some notes on the direct searches for non-smooth optimization problems are made. The global convergence vs. local convergence and their influences on expected solutions for simulation-based stochastic optimization are pointed out. The sufficient and simple decrease criteria for step acceptance are analyzed, and why simple decrease is enough for globalization in direct searches is identified. The reason to introduce the positive spanning set and its usage in direct searches is explained. Other topics such as the generalization of direct searches to bound, linear and non-linear constraints are also briefly discussed.