Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atm...Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atmospheric pollutant NO but also produces valuable ammonia(NH_(3)).Hence,through the synthesis and modification of Fe_(3)C nanocrystal cata-lysts,the as-obtained optimal sample of Fe_(3)C/C-900 was adopted as the NORR catalyst at ambient conditions.As a result,the Fe_(3)C/C-900 catalyst showed an NH_(3)Faraday efficiency of 76.5%and an NH_(3)yield rate of 177.5μmol·h^(-1)·cm^(-2)at the working potentials of-0.8 and-1.2 V versus reversible hydrogen electrode(vs.RHE),respectively.And it delivered a stable NORR activity during the electrolysis.Moreover,we attribute the high NORR properties of Fe_(3)C/C-900 to two aspects:one is the enhanced intrinsic activity of Fe_(3)C nanocrystals,including the lowering of the energy barrier of rate-limiting step(*NOH→*N)and the inhibition of hydrogen evolution;on the other hand,the favorable dispersion of active components,the effective adsorption of gaseous NO,and the release of liquid NH_(3)products facilitated by the porous carbon substrate.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,gr...Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.展开更多
With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysi...With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.展开更多
ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced...ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.展开更多
Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-p...Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability.展开更多
Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for ...Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for productions of materials with well-defined functional properties.Pulse electrolysis,a top-down electrochemical approach,has been demonstrated to be a viable method for producing nanostructured materials with a particular efficacy in the synthesis of tin oxides.This method allows for significant control over the composition and shape of the resulting tin oxides particles by modifying the anionic composition of the aqueous electrolyte,obviating the need for additional capping agents in the synthesis process and eliminating the requirement for high-temperature post-treatments.The composition and microstructural characteristics of these oxides are found to be contingent upon the differing stabilities of tin fluoride and chloride complexes,as well as the distinct mechanisms of interaction between chloride and fluoride anions with an oxidized tin surface,which is influenced by the varying kosmotropic/chaotropic nature of these anions.The composition and microstructural characteristics of the obtained dispersed tin oxides would thus determine their potential applications as an anode material for lithium-ion batteries,as a photocatalyst,or as an oxyphilic component of a hybrid support for a platinum-containing electrocatalyst.展开更多
This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transie...This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transient behavior of the stack with and without blowing gas into the air electrode is almost the same.With a current density of 0.67 A·cm^(-2)@750℃,the stack operated for over 200 h under co-electrolysis conditions without air blowing,and the voltage drop rate of the stack was approximately 0.203%/100 hours.Microstructure analysis revealed a significant loss of nickel particles and an apparent for-mation of an insulating phase strontium chromate(SrCrO4)on the surface of the current collection layer of the air electrode,which are identified as key factors contributing to the performance degradation of the stack.This study provides a reference for development of efficient fuel preparation technology based on SOEC stack in airless environments.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the...Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.展开更多
Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, a...Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, and Raman spectroscopy were used to examine the microstructure and chemical composition of the nanosheets and epoxy coatings. EIS experiment was used to explore the corrosion behaviour of the coatings. The O/C ratio for GO and rGO-SLE was found to be 2.5 and 4.5, indicating a decrease in the carbon content after the reduction of GO, confirming the adsorption of SLE onto the GO nanosheets. The successful reduction of GO in the presence of SLE particles was confirmed by disappearing the C=O peak and a significant decrease in the C-O-C bond intensity. The epoxy/rGO- SLE coatings exhibited the highest double-layer thickness and excellent corrosion resistance compared to neat epoxy and epoxy/GO coatings, emphasizing the significant role of rGO in enhancing the protective performance of epoxy coatings. The highest values for total charge transfer and film resistances and the inhibition efficiency were observed to be 6529 Ω·cm^(2) and 90%, respectively, for the epoxy/rGO-SLE coated steel plate. It was also found that the epoxy/0.15 wt.% rGO-SLE coating demonstrates the best corrosion resistance performance.展开更多
Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laborat...Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect.The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 m L. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.展开更多
Objective C1q/TNF-related protein(CTRP)1 was initiallyidentified as a paralog of adiponectin based on the similarity in C1q domain of these two proteins.Previously,we showed that CTRP1promotes the development of ather...Objective C1q/TNF-related protein(CTRP)1 was initiallyidentified as a paralog of adiponectin based on the similarity in C1q domain of these two proteins.Previously,we showed that CTRP1promotes the development of atherosclerosis by increasing endothelial adhesiveness.Here,we sought to investigate whether CTRP1 also influences vascular dilatory functions.展开更多
The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide sy...The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide systems.Recently,however,the development of freestanding oxide membranes has provided a plausible solution to these substrate limitations.Single-crystalline functional oxide films can be released from their substrates without incurring significant damage and can subsequently be transferred to any substrate of choice.This paper discusses recent advancements in the fabrication,adjustable physical properties,and various applications of freestanding oxide perovskite films.First,we present the primary strategies employed for the synthesis and transfer of these freestanding perovskite thin films.Second,we explore the main functionalities observed in freestanding perovskite oxide thin films,with special attention to the tunable functionalities and physical properties of these freestanding perovskite membranes under varying strain states.Next,we encapsulate three representative devices based on freestanding oxide films.Overall,this review highlights the potential of freestanding oxide films for the study of novel functionalities and flexible electronics.展开更多
Subclinical endometritis is a physiological inflammation that serves to clear persistent contaminants from the uterus. To investigate the alteration of antioxidant, such as vitamin E(VE) and vitamin C(VC), total o...Subclinical endometritis is a physiological inflammation that serves to clear persistent contaminants from the uterus. To investigate the alteration of antioxidant, such as vitamin E(VE) and vitamin C(VC), total oxidant capacity(TOC) and nitric oxide(NO) in cows with normal and subclinical endometritis(SCE), we examined the concentrations of NO, VC and VE, TOC and polymorphonuclear neutrophils(PMN) percentage in uterine secretion. The cows were divided into two groups, normal(n=20) and subclinical endometritis(SCE, n=60), based on endometrial cytology(presence of PMN≥5%). Uterine secretion and blood were collected as described previously. Griess reaction was used to determine the concentration of NO. The concentrations of TOC, VC and VE were detected by a commercially available assay kit. The results showed that the concentrations of NO, TOC and PMN percentage were significantly higher(P〈0.01, P〈0.05, and P〈0.01, respectively) in uterine secretion with SCE compared to those from normal; however, the levels of VC and VE were significantly lesser(P〈0.01). In conclusion, the concentrations of NO, TOC, VC, VE and PMN percentage differed between normal and SCE cows. Meanwhile, the relationship between the concentration of NO and PMN percentage from uterine secretion in cows with subclinical endometritis were positively correlated. Consequently, these alterations in NO, TOC, VC, VE levels and PMN percentage contributed to as a diagnostic index of the uterine inflammation, with the aim to increase the reproduction of the cows and the decrease economic losses.展开更多
In order to investigate the effects of nitric oxide(NO) on the growth and development of porcine preantral follicles,we treated the follicles with different concentrations of sodium nitroprusside(SNP,0, 0.001,0.01,0.1...In order to investigate the effects of nitric oxide(NO) on the growth and development of porcine preantral follicles,we treated the follicles with different concentrations of sodium nitroprusside(SNP,0, 0.001,0.01,0.1 and 1 mmol/L),a NO donor.The results showed that the follicle diameter increased during in vitro culture,but there were no significant differences between the treatments(P】0.05);the survival rate in the 1 mmol/L SNP group was significantly lower than that in the 1μmol/L SNP group(61.61% vs 81.52%,P【0.05),but no significant differences were found between other treatments(P】0.05);the rate of antrum formation in the 1μmol/L SNP group peaked at 50%on day 4,and the rate in the 1μmol/L SNP group on day 6 was higher than that in the 0.01 mmol/L SNP group;in addition,the rate of antrum formation in the 1μmol/L SNP group was significantly higher than that in the 0.1 and 1 mmol/L SNP groups (Day 6:73.07%vs 50%,47.62%,P【0.05).After 6 days of culture,the proportion of normal oocytes in the1 mmol/L SNP group was significantly lower than that in the 1μmol/L SNP group(71.21%vs 48.18%, P【0.05),with no significant differences between other treatments(P】0.05).The recovery rate of cumulus cells oocyte complexes(COCs) in the 1μmol/L SNP group was significantly higher than that in the controls and all other treatments(37.27%vs 22.88%,25.59%,20.74%and 19.39%,P【0.05).The results indicate that during the in vitro culture of porcine preantral follicles,low concentration of NO released from SNP improves growth and development of oocytes and follicular antrum formation while high levels of NO are toxic to follicular survival.展开更多
OBJECTIVE To investigate the regulation of {O^2(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate}(JS-K),anitric oxide donor,on tumor energy metabolism in H22 tumor-bearing mice.METHODS Th...OBJECTIVE To investigate the regulation of {O^2(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate}(JS-K),anitric oxide donor,on tumor energy metabolism in H22 tumor-bearing mice.METHODS The hepatoma animal model in BALB/c mice was established with H22 cell line.The JS-K group and model group were received JS-K(0.75 and 1.5 mg?kg^(-1)) and saline via tail intravenous once every 3 d for 14 d,received 5 injections,respectively.The positive group was received 5-FU 20 mg·kg^(-1) by intraperitoneal injection once a day for 14 d.On the 15 th day mice were sacrificed.The tumor growth inhibition rate were calculated.The activities of hexokinase(HK),phosphofructo kinase(PFK),pyruvate kinase(PK),succinate dehydrogenase(SDH),adenosine triphosphatase(ATPase),and the levels of lactic acid(LD) and adenosine triphosphate(ATP) in tumor tissues were determined by colorimetric method.RESULTS Compared with model group,the tumor mass of JS-K0.75 and 1.5 mg·kg^(-1) group was significantly reduced(P<0.01),and the tumor growth inhibition rate was 23.9% and 50.3%,respectively.The activity of HK,PFK,PK,SDH and ATPase of tumor tissue in model group was(22.6±3.7,14.4±2.6,12.9±3.2 and 10.5±2.6)U·g^(-1) protein and(0.70±0.10)μmol Pi·mg^(-1) protein per hour,respectively;which in JS-K 1.5 mg?kg^(-1) group was dropped by 42.0%,26.6%,22.7%,23.3% and 21.7%(P<0.01,P<0.05).Compared with the model group,the level of ATP and LD in JS-K group was dropped(P<0.01).CONCLUSION JS-K can inhibit the growth of tumor in H22 tumor-bearing mice and its mechanism may be related to regulating the tumor energy metabolism with inhibition of glycolysis and aerobic oxidation.展开更多
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate...Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.展开更多
OBJECTIVE To study the function of neuronal nitric oxide synthase(nNOS) in the dentate gyrus(DG) in the pathology of epilepsy.METHODS The expression of nNOS in the DG was measured by qPCR and Western blotting in mice ...OBJECTIVE To study the function of neuronal nitric oxide synthase(nNOS) in the dentate gyrus(DG) in the pathology of epilepsy.METHODS The expression of nNOS in the DG was measured by qPCR and Western blotting in mice 3 and 12 h,1,7,14,and 60 d after treatment with pilocarpine(280 mg·kg-1,ip,one time).We constructed a type of lentiovirus encoding the full length cDNA of nNOS(LV-nNOS-GFP) and injected it and LV-GFP(1 μL) into the DG of the hippocampus 7 d after pilocarpine-induced seizure.The occurrence of epileptic spikes and spontaneous seizure(SRS)were monitored through electroencephalo-graph(EEG) and the protein expression was confirmed by Western blotting.We also constructed a lentioviral vehicle to interfere the expression of nNOS mRNA,which was named as LV-n NOSRNAi-GFP.A volume of 1 μL of LV-nNOS-RNAiGFP or LV-GFP was injected into the DG of the hippocampus 7 d before pilocarpine-induced seizure followed by EEG record and protein detection 2 months later.By EEG,we compared the susceptibility of nNOS knockout and wild-type mice to seizure induction and the development of epilepsy.In addition,we measured the influence of nNOS knockout on the excitability of dentate cells including mEPSC and mIPSC by using patch clamp technique.RESULTS Western blotting and qPCR measurement showed that the mRNA and protein expression of nNOS in the DG was not significantly changed in pilocarpinetreated mice compared with control mice.But the both m RNA and protein expression of nNOS decreased 7,14 and 60 d after treatment with pilocarpine(280 mg·kg-1,ip,one time).With infection of LV-nNOS-GFP in the DG,the decreased level of nNOS was recovered 7 d after seizure induction and the frequency of epileptic spikes and SRS were reversed by nNOS overexpression.We found that nNOS knockout caused a higher susceptive level to seizure induction by pilocarpine.Re-expression of nNOS in the DG of nNOS knockout mice relived the severity of epilepsy.By patch clamp recording,we found that there was no significant difference in the amplitude of mEPSC and mIPSC between nNOS knockout and wild-type mice,but the frequency of mEPSC was increased in nN OS knockout mice.Consistently,knockdown of nNOS by injection of LV-nNOS-RNAi-GFP into the DG caused higher frequency of epileptic spikes and SRS 2 months after pilocarpine-induced seizure.CONCLUSION Neurons expressing nNOS in the DG play an important role in the development of epilepsy.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
基金supported by the Guangxi Natural Science Fund for Distinguished Young Scholars(2024GXNSFFA010008)Shenzhen Science and Technology Program(JCYJ20230807112503008).
文摘Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atmospheric pollutant NO but also produces valuable ammonia(NH_(3)).Hence,through the synthesis and modification of Fe_(3)C nanocrystal cata-lysts,the as-obtained optimal sample of Fe_(3)C/C-900 was adopted as the NORR catalyst at ambient conditions.As a result,the Fe_(3)C/C-900 catalyst showed an NH_(3)Faraday efficiency of 76.5%and an NH_(3)yield rate of 177.5μmol·h^(-1)·cm^(-2)at the working potentials of-0.8 and-1.2 V versus reversible hydrogen electrode(vs.RHE),respectively.And it delivered a stable NORR activity during the electrolysis.Moreover,we attribute the high NORR properties of Fe_(3)C/C-900 to two aspects:one is the enhanced intrinsic activity of Fe_(3)C nanocrystals,including the lowering of the energy barrier of rate-limiting step(*NOH→*N)and the inhibition of hydrogen evolution;on the other hand,the favorable dispersion of active components,the effective adsorption of gaseous NO,and the release of liquid NH_(3)products facilitated by the porous carbon substrate.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金supported by Gansu Provincial Science and Technology Plan(23CXGA0195)Longnan Science and Technology Plan(2024CX03)。
文摘Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.
文摘With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.
基金supported by the National Natural Science Foundation of China(61774140).
文摘ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.
基金supported by National Key R&D Program of China(2021YFB4001401)National Natural Science Foundation of China(52272190,22178023).
文摘Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability.
基金supported by the Ministry of Science and Higher Education of the Russian Federation under Project FENN-2024-0002.
文摘Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for productions of materials with well-defined functional properties.Pulse electrolysis,a top-down electrochemical approach,has been demonstrated to be a viable method for producing nanostructured materials with a particular efficacy in the synthesis of tin oxides.This method allows for significant control over the composition and shape of the resulting tin oxides particles by modifying the anionic composition of the aqueous electrolyte,obviating the need for additional capping agents in the synthesis process and eliminating the requirement for high-temperature post-treatments.The composition and microstructural characteristics of these oxides are found to be contingent upon the differing stabilities of tin fluoride and chloride complexes,as well as the distinct mechanisms of interaction between chloride and fluoride anions with an oxidized tin surface,which is influenced by the varying kosmotropic/chaotropic nature of these anions.The composition and microstructural characteristics of the obtained dispersed tin oxides would thus determine their potential applications as an anode material for lithium-ion batteries,as a photocatalyst,or as an oxyphilic component of a hybrid support for a platinum-containing electrocatalyst.
基金co-supported by the National Key R&D Program of China(No.2022YFB4002203)Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(No.LBMHY24B060003)Ningbo Key R&D Project(No.2023Z155).
文摘This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transient behavior of the stack with and without blowing gas into the air electrode is almost the same.With a current density of 0.67 A·cm^(-2)@750℃,the stack operated for over 200 h under co-electrolysis conditions without air blowing,and the voltage drop rate of the stack was approximately 0.203%/100 hours.Microstructure analysis revealed a significant loss of nickel particles and an apparent for-mation of an insulating phase strontium chromate(SrCrO4)on the surface of the current collection layer of the air electrode,which are identified as key factors contributing to the performance degradation of the stack.This study provides a reference for development of efficient fuel preparation technology based on SOEC stack in airless environments.
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
基金Project(2023RC3066)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023JJ50079)supported by the Hunan Provincial Natural Science Foundation,China。
文摘Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.
文摘Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, and Raman spectroscopy were used to examine the microstructure and chemical composition of the nanosheets and epoxy coatings. EIS experiment was used to explore the corrosion behaviour of the coatings. The O/C ratio for GO and rGO-SLE was found to be 2.5 and 4.5, indicating a decrease in the carbon content after the reduction of GO, confirming the adsorption of SLE onto the GO nanosheets. The successful reduction of GO in the presence of SLE particles was confirmed by disappearing the C=O peak and a significant decrease in the C-O-C bond intensity. The epoxy/rGO- SLE coatings exhibited the highest double-layer thickness and excellent corrosion resistance compared to neat epoxy and epoxy/GO coatings, emphasizing the significant role of rGO in enhancing the protective performance of epoxy coatings. The highest values for total charge transfer and film resistances and the inhibition efficiency were observed to be 6529 Ω·cm^(2) and 90%, respectively, for the epoxy/rGO-SLE coated steel plate. It was also found that the epoxy/0.15 wt.% rGO-SLE coating demonstrates the best corrosion resistance performance.
基金Project(2011CB201505)supported by the National Key Basic Research Program of ChinaProject(BA2011031)supported by the Special Fund of Transformation of Scientific and Technological Achievements of Jiangsu Province,China
文摘Nitric oxide(NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet(UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect.The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 m L. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.
文摘Objective C1q/TNF-related protein(CTRP)1 was initiallyidentified as a paralog of adiponectin based on the similarity in C1q domain of these two proteins.Previously,we showed that CTRP1promotes the development of atherosclerosis by increasing endothelial adhesiveness.Here,we sought to investigate whether CTRP1 also influences vascular dilatory functions.
基金supported by the Fundamental Research Funds for the Central Universities(WK9990000102,WK2030000035).
文摘The study of oxide heteroepitaxy has been hindered by the issues of misfit strain and substrate clamping,which impede both the optimization of performance and the acquisition of a fundamental understanding of oxide systems.Recently,however,the development of freestanding oxide membranes has provided a plausible solution to these substrate limitations.Single-crystalline functional oxide films can be released from their substrates without incurring significant damage and can subsequently be transferred to any substrate of choice.This paper discusses recent advancements in the fabrication,adjustable physical properties,and various applications of freestanding oxide perovskite films.First,we present the primary strategies employed for the synthesis and transfer of these freestanding perovskite thin films.Second,we explore the main functionalities observed in freestanding perovskite oxide thin films,with special attention to the tunable functionalities and physical properties of these freestanding perovskite membranes under varying strain states.Next,we encapsulate three representative devices based on freestanding oxide films.Overall,this review highlights the potential of freestanding oxide films for the study of novel functionalities and flexible electronics.
基金Supported by Funding(RCB22)from the Doctoral Research Foundation of Northeast Agricultural University(2012)the Postdoctoral Fund of Heilongjiang Province(LBH-Z11239)
文摘Subclinical endometritis is a physiological inflammation that serves to clear persistent contaminants from the uterus. To investigate the alteration of antioxidant, such as vitamin E(VE) and vitamin C(VC), total oxidant capacity(TOC) and nitric oxide(NO) in cows with normal and subclinical endometritis(SCE), we examined the concentrations of NO, VC and VE, TOC and polymorphonuclear neutrophils(PMN) percentage in uterine secretion. The cows were divided into two groups, normal(n=20) and subclinical endometritis(SCE, n=60), based on endometrial cytology(presence of PMN≥5%). Uterine secretion and blood were collected as described previously. Griess reaction was used to determine the concentration of NO. The concentrations of TOC, VC and VE were detected by a commercially available assay kit. The results showed that the concentrations of NO, TOC and PMN percentage were significantly higher(P〈0.01, P〈0.05, and P〈0.01, respectively) in uterine secretion with SCE compared to those from normal; however, the levels of VC and VE were significantly lesser(P〈0.01). In conclusion, the concentrations of NO, TOC, VC, VE and PMN percentage differed between normal and SCE cows. Meanwhile, the relationship between the concentration of NO and PMN percentage from uterine secretion in cows with subclinical endometritis were positively correlated. Consequently, these alterations in NO, TOC, VC, VE levels and PMN percentage contributed to as a diagnostic index of the uterine inflammation, with the aim to increase the reproduction of the cows and the decrease economic losses.
基金the fund support from National Natural Science Foundation(30600432)Anhui Distinguished Youth Science and Technology Foundation (06041081)
文摘In order to investigate the effects of nitric oxide(NO) on the growth and development of porcine preantral follicles,we treated the follicles with different concentrations of sodium nitroprusside(SNP,0, 0.001,0.01,0.1 and 1 mmol/L),a NO donor.The results showed that the follicle diameter increased during in vitro culture,but there were no significant differences between the treatments(P】0.05);the survival rate in the 1 mmol/L SNP group was significantly lower than that in the 1μmol/L SNP group(61.61% vs 81.52%,P【0.05),but no significant differences were found between other treatments(P】0.05);the rate of antrum formation in the 1μmol/L SNP group peaked at 50%on day 4,and the rate in the 1μmol/L SNP group on day 6 was higher than that in the 0.01 mmol/L SNP group;in addition,the rate of antrum formation in the 1μmol/L SNP group was significantly higher than that in the 0.1 and 1 mmol/L SNP groups (Day 6:73.07%vs 50%,47.62%,P【0.05).After 6 days of culture,the proportion of normal oocytes in the1 mmol/L SNP group was significantly lower than that in the 1μmol/L SNP group(71.21%vs 48.18%, P【0.05),with no significant differences between other treatments(P】0.05).The recovery rate of cumulus cells oocyte complexes(COCs) in the 1μmol/L SNP group was significantly higher than that in the controls and all other treatments(37.27%vs 22.88%,25.59%,20.74%and 19.39%,P【0.05).The results indicate that during the in vitro culture of porcine preantral follicles,low concentration of NO released from SNP improves growth and development of oocytes and follicular antrum formation while high levels of NO are toxic to follicular survival.
基金supported by National Natural Science Foundation of China(81502627)the Young Backbone Teachers Assistance Scheme of Henan Province Colleges and Universities(2016GGJS-065)
文摘OBJECTIVE To investigate the regulation of {O^2(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate}(JS-K),anitric oxide donor,on tumor energy metabolism in H22 tumor-bearing mice.METHODS The hepatoma animal model in BALB/c mice was established with H22 cell line.The JS-K group and model group were received JS-K(0.75 and 1.5 mg?kg^(-1)) and saline via tail intravenous once every 3 d for 14 d,received 5 injections,respectively.The positive group was received 5-FU 20 mg·kg^(-1) by intraperitoneal injection once a day for 14 d.On the 15 th day mice were sacrificed.The tumor growth inhibition rate were calculated.The activities of hexokinase(HK),phosphofructo kinase(PFK),pyruvate kinase(PK),succinate dehydrogenase(SDH),adenosine triphosphatase(ATPase),and the levels of lactic acid(LD) and adenosine triphosphate(ATP) in tumor tissues were determined by colorimetric method.RESULTS Compared with model group,the tumor mass of JS-K0.75 and 1.5 mg·kg^(-1) group was significantly reduced(P<0.01),and the tumor growth inhibition rate was 23.9% and 50.3%,respectively.The activity of HK,PFK,PK,SDH and ATPase of tumor tissue in model group was(22.6±3.7,14.4±2.6,12.9±3.2 and 10.5±2.6)U·g^(-1) protein and(0.70±0.10)μmol Pi·mg^(-1) protein per hour,respectively;which in JS-K 1.5 mg?kg^(-1) group was dropped by 42.0%,26.6%,22.7%,23.3% and 21.7%(P<0.01,P<0.05).Compared with the model group,the level of ATP and LD in JS-K group was dropped(P<0.01).CONCLUSION JS-K can inhibit the growth of tumor in H22 tumor-bearing mice and its mechanism may be related to regulating the tumor energy metabolism with inhibition of glycolysis and aerobic oxidation.
基金supported by Key Science and Technology Innovation Team of Shaanxi Province(No.2022TD-33)National Natural Science Foundation of China(Grant Nos.21373161,21504067)。
文摘Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.
基金National Natural Science Foundation of China(81571269)Science Technology Innovation Fund of Nanjing Medical University (2017NJMUCX008).
文摘OBJECTIVE To study the function of neuronal nitric oxide synthase(nNOS) in the dentate gyrus(DG) in the pathology of epilepsy.METHODS The expression of nNOS in the DG was measured by qPCR and Western blotting in mice 3 and 12 h,1,7,14,and 60 d after treatment with pilocarpine(280 mg·kg-1,ip,one time).We constructed a type of lentiovirus encoding the full length cDNA of nNOS(LV-nNOS-GFP) and injected it and LV-GFP(1 μL) into the DG of the hippocampus 7 d after pilocarpine-induced seizure.The occurrence of epileptic spikes and spontaneous seizure(SRS)were monitored through electroencephalo-graph(EEG) and the protein expression was confirmed by Western blotting.We also constructed a lentioviral vehicle to interfere the expression of nNOS mRNA,which was named as LV-n NOSRNAi-GFP.A volume of 1 μL of LV-nNOS-RNAiGFP or LV-GFP was injected into the DG of the hippocampus 7 d before pilocarpine-induced seizure followed by EEG record and protein detection 2 months later.By EEG,we compared the susceptibility of nNOS knockout and wild-type mice to seizure induction and the development of epilepsy.In addition,we measured the influence of nNOS knockout on the excitability of dentate cells including mEPSC and mIPSC by using patch clamp technique.RESULTS Western blotting and qPCR measurement showed that the mRNA and protein expression of nNOS in the DG was not significantly changed in pilocarpinetreated mice compared with control mice.But the both m RNA and protein expression of nNOS decreased 7,14 and 60 d after treatment with pilocarpine(280 mg·kg-1,ip,one time).With infection of LV-nNOS-GFP in the DG,the decreased level of nNOS was recovered 7 d after seizure induction and the frequency of epileptic spikes and SRS were reversed by nNOS overexpression.We found that nNOS knockout caused a higher susceptive level to seizure induction by pilocarpine.Re-expression of nNOS in the DG of nNOS knockout mice relived the severity of epilepsy.By patch clamp recording,we found that there was no significant difference in the amplitude of mEPSC and mIPSC between nNOS knockout and wild-type mice,but the frequency of mEPSC was increased in nN OS knockout mice.Consistently,knockdown of nNOS by injection of LV-nNOS-RNAi-GFP into the DG caused higher frequency of epileptic spikes and SRS 2 months after pilocarpine-induced seizure.CONCLUSION Neurons expressing nNOS in the DG play an important role in the development of epilepsy.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.