When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution...When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution mechanisms that allow for unmanned clusters to maximize their overall task effective-ness under the condition of strategic diversity.This paper ana-lyzes these task requirements from three perspectives:the diver-sity of the decision space,information network construction,and the autonomous collaboration mechanism.Then,this paper pro-poses a method for solving the problem of strategy selection diversity under two network structures.Next,this paper presents a Moran-rule-based evolution dynamics model for unmanned cluster strategies and a vision-driven-mechanism-based evolu-tion dynamics model for unmanned cluster strategy in the con-text of strategy selection diversity according to various unmanned cluster application scenarios.Finally,this paper pro-vides a simulation analysis of the effects of relevant parameters such as the payoff factor and cluster size on cooperative evolu-tion in autonomous cluster collaboration for the two types of models.On this basis,this paper presents advice for effectively addressing diverse choices in unmanned cluster tasks,thereby providing decision support for practical applications of unmanned cluster tasks.展开更多
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely...As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.展开更多
Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real proc...Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm.展开更多
For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P...For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network, auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model.展开更多
Category-based statistic language model is an important method to solve the problem of sparse data.But there are two bottlenecks:1) The problem of word clustering.It is hard to find a suitable clustering method with g...Category-based statistic language model is an important method to solve the problem of sparse data.But there are two bottlenecks:1) The problem of word clustering.It is hard to find a suitable clustering method with good performance and less computation.2) Class-based method always loses the prediction ability to adapt the text in different domains.In order to solve above problems,a definition of word similarity by utilizing mutual information was presented.Based on word similarity,the definition of word set similarity was given.Experiments show that word clustering algorithm based on similarity is better than conventional greedy clustering method in speed and performance,and the perplexity is reduced from 283 to 218.At the same time,an absolute weighted difference method was presented and was used to construct vari-gram language model which has good prediction ability.The perplexity of vari-gram model is reduced from 234.65 to 219.14 on Chinese corpora,and is reduced from 195.56 to 184.25 on English corpora compared with category-based model.展开更多
观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该...观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该文提出使用情感分布增强(Sentiment Distribution Enhanced,SDE)方法改进现有基于狄利克雷过程混合模型的短文本流聚类算法,以高斯分布建模文本情感,并推导相应的坍缩吉布斯采样算法推断参数。该方法在捕获文本情感特征的同时,能够自动确定聚类簇数量并实现观点聚类。与现有先进方法在Tweets、Google News数据集上的对比实验显示,该文提出的方法在标准化互信息、准确度等指标上取得了超越现有模型的聚类表现,并且在主观性较强的数据集上具有更显著的优势。展开更多
基金supported by the National Natural Science Foundation of China(72471240).
文摘When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution mechanisms that allow for unmanned clusters to maximize their overall task effective-ness under the condition of strategic diversity.This paper ana-lyzes these task requirements from three perspectives:the diver-sity of the decision space,information network construction,and the autonomous collaboration mechanism.Then,this paper pro-poses a method for solving the problem of strategy selection diversity under two network structures.Next,this paper presents a Moran-rule-based evolution dynamics model for unmanned cluster strategies and a vision-driven-mechanism-based evolu-tion dynamics model for unmanned cluster strategy in the con-text of strategy selection diversity according to various unmanned cluster application scenarios.Finally,this paper pro-vides a simulation analysis of the effects of relevant parameters such as the payoff factor and cluster size on cooperative evolu-tion in autonomous cluster collaboration for the two types of models.On this basis,this paper presents advice for effectively addressing diverse choices in unmanned cluster tasks,thereby providing decision support for practical applications of unmanned cluster tasks.
基金supported by the National Natural Science Foundation of China(62375013).
文摘As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.
基金supported by Key Discipline Construction Program of Beijing Municipal Commission of Education (XK10008043)
文摘Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm.
文摘For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network, auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model.
基金Project(60763001) supported by the National Natural Science Foundation of ChinaProject(2010GZS0072) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ12271) supported by the Science and Technology Foundation of Provincial Education Department of Jiangxi Province,China
文摘Category-based statistic language model is an important method to solve the problem of sparse data.But there are two bottlenecks:1) The problem of word clustering.It is hard to find a suitable clustering method with good performance and less computation.2) Class-based method always loses the prediction ability to adapt the text in different domains.In order to solve above problems,a definition of word similarity by utilizing mutual information was presented.Based on word similarity,the definition of word set similarity was given.Experiments show that word clustering algorithm based on similarity is better than conventional greedy clustering method in speed and performance,and the perplexity is reduced from 283 to 218.At the same time,an absolute weighted difference method was presented and was used to construct vari-gram language model which has good prediction ability.The perplexity of vari-gram model is reduced from 234.65 to 219.14 on Chinese corpora,and is reduced from 195.56 to 184.25 on English corpora compared with category-based model.
文摘观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该文提出使用情感分布增强(Sentiment Distribution Enhanced,SDE)方法改进现有基于狄利克雷过程混合模型的短文本流聚类算法,以高斯分布建模文本情感,并推导相应的坍缩吉布斯采样算法推断参数。该方法在捕获文本情感特征的同时,能够自动确定聚类簇数量并实现观点聚类。与现有先进方法在Tweets、Google News数据集上的对比实验显示,该文提出的方法在标准化互信息、准确度等指标上取得了超越现有模型的聚类表现,并且在主观性较强的数据集上具有更显著的优势。