期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
CodeScore-R:用于评估代码合成功能准确性的自动化鲁棒指标
1
作者 杨光 周宇 +1 位作者 陈翔 张翔宇 《计算机研究与发展》 EI CSCD 北大核心 2024年第2期291-306,共16页
评估指标在代码合成领域中至关重要.常用的代码评估指标可以分为3种类型:基于匹配、基于语义和基于执行.其中,基于执行的Pass@k指标通过执行测试用例,能够准确判断预测代码的功能准确性.然而,该指标的计算需要大量开销,因此亟需设计一... 评估指标在代码合成领域中至关重要.常用的代码评估指标可以分为3种类型:基于匹配、基于语义和基于执行.其中,基于执行的Pass@k指标通过执行测试用例,能够准确判断预测代码的功能准确性.然而,该指标的计算需要大量开销,因此亟需设计一种自动化评估指标,在无需测试用例时仍可评估预测代码的功能准确性.此外,好的评估指标应当具有鲁棒性,即预测代码发生微小改变时,评估指标仍能保持其准确性.为此,提出了一种基于UniXcoder和对比学习的自动化鲁棒指标CodeScore-R,用于评估代码合成的功能准确性. CodeScore-R采用草图化处理、语法等价转换和变异测试等技术手段,有效减轻了标识符、语法结构和运算符对评估结果的干扰.实验结果表明,在Java和Python语言上的代码生成和迁移任务中,CodeScore-R的表现优于其他无需测试用例的评估指标,且更接近Pass@k指标,并具有更强的鲁棒性. 展开更多
关键词 代码合成评估指标 功能准确性 鲁棒性 代码合成 神经网络
在线阅读 下载PDF
基于图神经网络的嵌入式设备固件漏洞检测
2
作者 姚军 慕涛涛 《计算机应用与软件》 北大核心 2025年第9期255-262,共8页
随着嵌入式设备的种类和数量日益繁多,嵌入式设备的安全性也面临着巨大的挑战。通常,安全专家可以手动识别嵌入式设备的固件程序中存在的软件漏洞,但是人工分析非常耗时费力。针对上述问题,提出一种基于代码属性图及双向图神经网络的固... 随着嵌入式设备的种类和数量日益繁多,嵌入式设备的安全性也面临着巨大的挑战。通常,安全专家可以手动识别嵌入式设备的固件程序中存在的软件漏洞,但是人工分析非常耗时费力。针对上述问题,提出一种基于代码属性图及双向图神经网络的固件程序漏洞检测方法,从源代码级别自动检测固件程序中存在的软件漏洞。为了验证本方法的可行性,对从SARD收集的软件漏洞数据集和真实世界漏洞数据集进行实验验证,实验结果表明,漏洞检测精度和F1分数最高分别达到了93.4%和86.54%,可以显著提高软件漏洞的检测能力。 展开更多
关键词 嵌入式设备 图神经网络 代码属性图 漏洞检测
在线阅读 下载PDF
低密度奇偶校验码正则化神经网络归一化最小和译码算法
3
作者 周华 周鸣 张立康 《电子与信息学报》 北大核心 2025年第5期1486-1493,共8页
低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致... 低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致的过拟合问题,引入正则化(Regularization)优化了神经网络中边信息的权重训练,抑制了基于神经网络译码的过拟合问题,分别得到RNNMS,RVC-SNNMS和RCVSNNMS算法。仿真结果表明:采用共享权重可以减轻神经网络训练负担,降低LDPC码基于神经网络译码的误比特率(BER);正则化能有效缓解过拟合现象提升神经网络的译码性能。针对码长为576,码率为0.75的LDPC码,当误码率BER=10-6时,RNNMS,RVC-SNNMS和RCV-SNNMS算法相较于NNMS,VC-SNNMS和CV-SNNMS算法分别得到了0.18 dB,0.22 dB和0.27 dB的信噪比(SNR)增益,其中最佳的RVC-SNNMS算法相较于BP算法、NNMS算法和SNNMS算法,分别获得了0.55 dB,0.51 dB和0.22 dB的信噪比增益。 展开更多
关键词 低密度奇偶校验码 神经网络 归一化最小和译码 过拟合 正则化
在线阅读 下载PDF
面向高分辨率图像传输的CNN网络编码方案研究
4
作者 刘娜 杨颜博 +2 位作者 张嘉伟 李宝山 马建峰 《西安电子科技大学学报》 北大核心 2025年第2期225-238,共14页
网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码... 网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码方案对高维度空间信息的捕捉能力不足,带来较大的通信及计算开销。为此,文中提出采用二维卷积神经网络(CNN)对各网络节点的编解码器进行参数化设计的联合源的深度学习网络编码方案,通过CNN捕捉深层空间结构信息并降低网络节点的计算复杂度。在信源节点,通过卷积层运算实现对传输数据的降维处理,提升数据的传输速率;在中间节点,接收来自两个信源的数据并通过CNN编码压缩至单个信道传输;在信宿节点,对接收到的数据利用CNN进行升维解码而恢复出原始图像。实验表明,在不同信道带宽占用比和信道噪声水平下,该方案在峰值信噪比和结构相似度上展现出优良的解码性能。 展开更多
关键词 网络编码 深度学习 卷积神经网络 高分辨率图像 图像通信
在线阅读 下载PDF
考虑裂纹分形维数的平行黏结模型细观参数标定的神经网络模型
5
作者 龚囱 戚燕顺 +4 位作者 缪浩杰 肖琦 熊良锋 曾鹏 赵奎 《岩土力学》 北大核心 2025年第1期327-336,共10页
针对试错法在平行黏结模型细观参数标定过程中存在繁琐耗时,且无法定量评价数值模拟与室内试验的裂纹匹配程度等局限性,统计并分析了近10年平行黏结模型细观参数取值范围,采用盒计数法获取了数值模拟试验、室内试验所得破坏后岩石表面... 针对试错法在平行黏结模型细观参数标定过程中存在繁琐耗时,且无法定量评价数值模拟与室内试验的裂纹匹配程度等局限性,统计并分析了近10年平行黏结模型细观参数取值范围,采用盒计数法获取了数值模拟试验、室内试验所得破坏后岩石表面裂纹分形维数。在此基础上,建立了以宏观弹性模量、宏观泊松比、峰值强度和裂纹分形维数等4个参数为输入层,黏结弹性模量、黏结法向与切向刚度比、黏结内聚力、黏结内摩擦角、黏结抗拉强度和摩擦系数等6个细观参数为输出层的神经网络模型,对比分析了考虑与不考虑裂纹分形维数时平行黏结模型细观参数标定效果。研究结果表明:(1)所建立的神经网络模型具有较好的收敛速度、预测精度与泛化性能,测试集输出数据与期望值误差约为3.34%。(2)将裂纹分形维数纳入神经网络模型后,数值模拟所得弹性模量、峰值应力与泊松比等宏观参数与室内试验结果的误差小于3.00%,优于不考虑裂纹分形维数标定结果。(3)该方法可定量保障数值模拟所得裂纹不规则性与室内试验结果的一致性,其在一定程度上可视为对现有神经网络模型细观参数标定结果的修正。研究成果可为提高平行黏结模型细观参数标定效果提供新思路。 展开更多
关键词 分形维数 颗粒流 平行黏结模型 参数标定 神经网络
在线阅读 下载PDF
一种基于混合量子卷积神经网络的恶意代码检测方法 被引量:1
6
作者 熊其冰 苗启广 +2 位作者 杨天 袁本政 费洋扬 《计算机科学》 北大核心 2025年第3期385-390,共6页
量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测... 量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测模型越来越复杂,参数量越来越大,迫切需要一种高效轻量型的检测模型。为此,设计了一种混合量子卷积神经网络模型,将量子计算融入经典卷积神经网络,以提高模型的计算效率。该模型包含量子卷积层、池化层和经典全连接层。量子卷积层采用低深度强纠缠轻量型的参数化量子线路实现,仅使用两类量子门:量子旋转门Ry和受控非门CNOT(controlled-NOT),并仅使用两量子比特实现卷积计算。池化层基于经典计算和量子计算实现了3种池化方法。在Google TensorFlow Quantum上进行了模拟实验。实验结果显示,所提模型在恶意代码公开数据集DataCon2020和Ember的分类性能(accuracy,F1-score)分别达到了(97.75%,97.71%)和(94.65%,94.78%),均有明显提升。 展开更多
关键词 量子计算 量子机器学习 混合量子卷积神经网络 恶意代码检测
在线阅读 下载PDF
面向VVC的QP自适应环路滤波器
7
作者 刘鹏宇 金鹏程 《北京工业大学学报》 北大核心 2025年第10期1171-1178,共8页
现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路... 现有的基于卷积神经网络(convolutional neural network,CNN)的环路滤波器倾向于将多个网络应用于不同的量化参数(quantization parameter,QP),消耗训练模型中的大量资源,并增加内存负担。针对这一问题,提出一种基于CNN的QP自适应环路滤波器。首先,设计一个轻量级分类网络,按照滤波难易程度将编码树单元(coding tree unit,CTU)划分为难、中、易3类;然后,构建3个融合了特征信息增强融合模块的基于CNN的滤波网络,以满足不同QP下的3类CTU滤波需求。将所提出的环路滤波器集成到多功能视频编码(versatile video coding,VVC)标准H.266/VVC的测试软件VTM 6.0中,替换原有的去块效应滤波器(deblocking filter,DBF)、样本自适应偏移(sample adaptive offset,SAO)滤波器和自适应环路滤波器。实验结果表明,该方法平均降低了3.14%的比特率差值(Bjøntegaard delta bit rate,BD-BR),与其他基于CNN的环路滤波器相比,显著提高了压缩效率,并减少了压缩伪影。 展开更多
关键词 视频编码 多功能视频编码(versatile video coding VVC)标准 环路滤波 卷积神经网络(convolutional neural network CNN) 深度学习 图像去噪
在线阅读 下载PDF
综合特征分段组稀疏编码的交通标志识别方法
8
作者 朱逸峰 奚峥皓 +3 位作者 郑阳 刘翔 刘亚奇 张星 《计算机科学与探索》 北大核心 2025年第10期2712-2721,共10页
随着无人驾驶、辅助驾驶等技术的发展,交通标志识别(TSR)问题被更多的研究者所关注。目前,在普通交通环境下的TSR问题得到了较好的解决,但当环境中存在交通标志模糊、部分遮挡等噪声干扰时,其TSR的处理效果并不理想。针对该问题进行研究... 随着无人驾驶、辅助驾驶等技术的发展,交通标志识别(TSR)问题被更多的研究者所关注。目前,在普通交通环境下的TSR问题得到了较好的解决,但当环境中存在交通标志模糊、部分遮挡等噪声干扰时,其TSR的处理效果并不理想。针对该问题进行研究,提出了一种新颖的结合孪生网络的综合特征分段组稀疏编码的TSR问题解决方法。提取交通标志的多个不同尺度特征编码,并提出利用综合特征编码的方法来表征交通标志;通过提出的分段组稀疏编码方法对交通标志的综合特征编码进行优化,以改善模型对编码的学习能力,提高编码的鲁棒性;构建了用于分段组稀疏编码训练的孪生神经网络模型,该模型因其简单的结构和较少的层数使其不易出现过拟合问题,同时所提模型也具有较少的参数量,较大幅度提升了模型的运算速度。实验表明,所提方法在TT100K数据集原始环境、运动模糊环境中,与目前SOTA模型最好成绩相比其准确率、精确率、召回率与F1分数等评价指标相近,模型参数量减少70.8%,FPS提升51.4%;在部分遮挡噪声环境中,各指标均显著优于目前SOTA模型最好成绩,尤其在遮挡率为60%时,所提方法的准确率和FPS分别较目前SOTA模型最好成绩提升了0.118和27 FPS。 展开更多
关键词 计算机视觉 交通标志识别 分段组稀疏编码 孪生神经网络
在线阅读 下载PDF
基于速率编码的极低延迟深度脉冲神经网络研究
9
作者 熊志民 陈云华 +1 位作者 冯忍 陈平华 《控制理论与应用》 北大核心 2025年第3期531-540,共10页
脉冲神经网络(SNN)具有强大的时空信息表征、异步事件处理能力,但由于脉冲发放过程不具有连续可微性,其训练是一个难题.人工神经网络(ANN)转SNN的方法,能够获得较高推理精度的深度SNN,但却存在SNN网络延迟和功耗过高的问题.为了降低网... 脉冲神经网络(SNN)具有强大的时空信息表征、异步事件处理能力,但由于脉冲发放过程不具有连续可微性,其训练是一个难题.人工神经网络(ANN)转SNN的方法,能够获得较高推理精度的深度SNN,但却存在SNN网络延迟和功耗过高的问题.为了降低网络延迟和功耗,本文从脉冲信息传递的异步特性入手,分析了极低延迟下SNN精度损失的主要原因,提出残余膜电位误差(RMPE)的概念,并对其进行分析与推导,建立残余膜电位与初始膜电位和权重之间的关系模型.基于所建立的残余膜电位模型,提出一种初始膜电位和权重的分层校准算法,减少残余膜电位误差,从而解决脉冲输入序列均匀分布假设与真实分布不一致的问题.提出一种ANN-SNN的双阶段转化框架,在第1阶段,采用带有可训练分层阈值的量化截断激活函数对ANN进行二次训练,以实现量化误差与截断误差的最优化;在第2阶段,对SNN进行微调训练,以进一步缩小残余膜电位误差,使得在极低延迟下的ANN-SNN转化也能获得较高的精度.实验结果表明,本文方法在推理延迟和功耗方面都优于现有的方法. 展开更多
关键词 脉冲神经网络 ANN-SNN转化 速率编码
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
10
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于RGB特征的下一个最优视图导航技术
11
作者 周峥 戴亚桥 +2 位作者 易任娇 蓝龙 朱晨阳 《图学学报》 北大核心 2025年第3期551-557,共7页
神经辐射场(NeRF)在二维图像到三维场景重建领域展现出优异的性能,使用二维图像作为训练数据,能够重建出场景的三维结构,并能进行高质量的新视图渲染。尽管NeRF在三维场景重建领域是十分有效的,但也存在训练速度慢、推理时间长的问题,... 神经辐射场(NeRF)在二维图像到三维场景重建领域展现出优异的性能,使用二维图像作为训练数据,能够重建出场景的三维结构,并能进行高质量的新视图渲染。尽管NeRF在三维场景重建领域是十分有效的,但也存在训练速度慢、推理时间长的问题,并且样本质量与三维场景重建质量密切关联。为解决NeRF在低样本质量情况下的高质量三维重建问题,本文使用2组不同哈希编码的NeRF来学习同一个场景,评估候选视图信息增益之间的差距来引导视图采样。提出一种基于RGB特征的下一个最优视图(next best view)导航技术新框架,该框架在稀疏训练数据上具有很强的鲁棒性,能够通过RGB特征评估捕获高信息增益的下一个最优视图,并优化NeRF训练,可以用最少的额外视图来提高新视图合成质量。通过对NeRF训练流程的优化,网络收敛速度提升大约10倍,显存占用降低39.8%,大量实验验证了该模型的有效性和鲁棒性。 展开更多
关键词 神经辐射场 哈希编码 稀疏重建 信息增益 主动学习
在线阅读 下载PDF
基于瓦片编码网络的钢轨焊缝几何不平顺识别
12
作者 高天赐 史一帆 +4 位作者 江乐鹏 王源 刘晓舟 罗钦 王平 《铁道科学与工程学报》 北大核心 2025年第5期2346-2354,共9页
钢轨焊缝作为轨道的三大薄弱环节之一,其服役状态对于铁路运营的安全性与稳定性具有重要影响,因此,实现钢轨焊缝几何平直度的快速、高效测量,对于保障铁路行车安全,提升铁路工务人员作业效率具有重要意义。鉴于此,首先利用手推式钢轨短... 钢轨焊缝作为轨道的三大薄弱环节之一,其服役状态对于铁路运营的安全性与稳定性具有重要影响,因此,实现钢轨焊缝几何平直度的快速、高效测量,对于保障铁路行车安全,提升铁路工务人员作业效率具有重要意义。鉴于此,首先利用手推式钢轨短波几何检测装备采集钢轨短波不平顺波形信息;然后,提出一种基于模糊瓦片编码神经网络的深度学习方法,该方法不仅能够输出短波不平顺信号中钢轨焊缝的中心里程位置还可以计算相应位置的识别可靠度,从而实现从多种混合、复杂短波不平顺信号中快速分离出钢轨焊缝的几何波形,提升工务数据利用效率;最后,在某线路开展现场测试,验证该方法的准确性与稳定性,同时将焊缝平直度的检测结果与工务部门使用的电子平直尺测量结果进行对比,提升工程可行性。研究结果表明:1)基于瓦片编码网络的钢轨焊缝识别准确率可达92.01%,召回率可到94.98%;2)同时,基于瓦片编码网络能够准确识别钢轨焊缝中心,与实际焊缝中心偏差可控制在0.03 m以内;3)最终识别焊缝的1 m弦平直度与现场所使用的标准钢直尺+塞尺组合测量幅值结果基本一致,最大幅值相差不超过0.1 mm。综上所述,该研究可为提升工务检测数据的利用效率,降低钢轨焊缝的检测成本提供一定的工程技术参考价值。 展开更多
关键词 钢轨焊缝 瓦片编码网络 短波不平顺 智能检测 焊缝平直度
在线阅读 下载PDF
基于投影梯度下降的多编码神经网络治疗肽功能预测研究
13
作者 冉琴 阮小利 +2 位作者 徐婧 李少波 胡丙齐 《计算机科学》 北大核心 2025年第S1期134-139,共6页
在生物医学领域,治疗肽作为传统抗生素药物的有效替代品,因其低毒性、高吸收率和高生物活性而被广泛应用于疾病治疗。然而,目前从深度学习的角度预测肽功能的研究还仍有较大改进空间。因此,基于公开的多功能治疗肽数据集,提出了一种基... 在生物医学领域,治疗肽作为传统抗生素药物的有效替代品,因其低毒性、高吸收率和高生物活性而被广泛应用于疾病治疗。然而,目前从深度学习的角度预测肽功能的研究还仍有较大改进空间。因此,基于公开的多功能治疗肽数据集,提出了一种基于投影剃度下降的多编码神经网络(PrMFTP-PGD)。首先,结合了多头注意力机制的多编码器提取输入向量的特征并获得较好的表示能力。然后,引入线性注意力机制进一步增强对特征的表示和提取能力。最后,通过投影梯度下降的对抗训练缓解多功能治疗肽数据集中固有的类不平衡问题。在独立测试集上与MPMAB,MLBP,PrMFTP,SP-RNN和ETFC方法进行比较,在精确率、覆盖率、准确率和绝对正确率指标中最大分别提升了2.55%,2.81%,2.59%和2.39%,结果表明,所提方法能够增强模型捕捉序列特征的能力,以更好地对多功能治疗肽进行预测。 展开更多
关键词 多功能治疗肽 功能预测 多标签分类 多编码神经网络 深度学习
在线阅读 下载PDF
面向恶意代码检测的深度注意力网络架构
14
作者 李思聪 王飞 +1 位作者 魏子令 陈曙晖 《信息网络安全》 北大核心 2025年第8期1208-1222,共15页
针对恶意代码变种激增导致传统检测方法效能不足的问题,文章提出一种基于混合多尺度注意力网络的恶意代码分类架构MSA-ResNet。该架构通过双线性插值算法实现图像尺寸标准化,有效保留易混淆恶意代码家族的纹理特征,并结合动态数据增强... 针对恶意代码变种激增导致传统检测方法效能不足的问题,文章提出一种基于混合多尺度注意力网络的恶意代码分类架构MSA-ResNet。该架构通过双线性插值算法实现图像尺寸标准化,有效保留易混淆恶意代码家族的纹理特征,并结合动态数据增强策略优化输入多样性。在网络架构中,将多尺度注意力模块嵌入ResNet50残差块末端,构建跨尺度特征交互机制,使特征点关联距离缩短,注意力收敛速度提升。实验结果表明,架构在Malimg数据集上实现99.47%的准确率与99.46%的宏平均F1分数,较传统ResNet50架构提升1.95%,参数量仅增加15%。与现有最优方法相比,分类精度提升0.49%,且对Obfuscator.AD等复杂恶意代码变种检测有效。 展开更多
关键词 恶意代码可视化 卷积神经网络 多尺度注意力机制 图像尺寸归一化算法 特征融合
在线阅读 下载PDF
基于增强控制流图与孪生网络架构的代码克隆检测方法
15
作者 熊曙初 段金焱 +1 位作者 尹璐 曾智勇 《计算机应用研究》 北大核心 2025年第7期2132-2140,共9页
针对现有代码克隆检测方法存在上下文信息缺失以及语义学习能力弱的问题,提出一种基于增强控制流图与孪生网络架构的代码克隆检测方法。该方法首先设计了代码表示结构ECFG(enhanced control flow graph),在控制流图中嵌入跨节点关联边... 针对现有代码克隆检测方法存在上下文信息缺失以及语义学习能力弱的问题,提出一种基于增强控制流图与孪生网络架构的代码克隆检测方法。该方法首先设计了代码表示结构ECFG(enhanced control flow graph),在控制流图中嵌入跨节点关联边以强化上下文信息的感知;其次构建基于孪生网络架构的代码语义匹配模型CGSMN(code graph semantic matching network)。该模型先融合多头注意力机制,提取节点中的关键信息,随后改进关系图注意力网络,捕获节点间的关联信息以生成图特征向量,再挖掘特征向量间的语义联系,计算语义相似度。在两个代表性数据集上进行实证,结果表明,与ASTNN、FA-AST和DHAST等方法相比,在BigCloneBench数据集上,F_(1)值提升了0.5~15.5百分点,在Google Code Jam数据集上F_(1)值提升了1.5~16.5百分点,证明了该方法针对语义克隆检测的有效性。 展开更多
关键词 控制流图 孪生网络架构 代码表征 语义相似性 克隆检测
在线阅读 下载PDF
基于Transformer-GCN的源代码漏洞检测方法
16
作者 梁辰 王奕森 +1 位作者 魏强 杜江 《计算机应用》 北大核心 2025年第7期2296-2303,共8页
针对现有的基于深度学习的源代码漏洞检测方法存在目标代码语法和语义缺失严重以及神经网络模型对目标代码图点(边)权重分配不合理等问题,提出一种基于代码属性图(CPG)与自适应图卷积网络(AT-GCN)的源代码漏洞检测方法 VulATGCN。该方... 针对现有的基于深度学习的源代码漏洞检测方法存在目标代码语法和语义缺失严重以及神经网络模型对目标代码图点(边)权重分配不合理等问题,提出一种基于代码属性图(CPG)与自适应图卷积网络(AT-GCN)的源代码漏洞检测方法 VulATGCN。该方法使用CPG对源代码进行表征,结合CodeBERT进行节点向量化,并通过图中心性分析提取深层次结构特征,从而多维度地捕捉代码的语法和语义信息。之后,结合Transformer自注意力机制善于捕捉长距离依赖关系和图卷积网络(GCN)善于捕捉局部特征的优势设计AT-GCN模型,从而实现对不同重要性区域特征的融合学习和精确提取。在真实漏洞数据集Big-Vul和SARD上的实验结果表明,所提方法 VulATGCN的平均F1分数达到了82.9%,相较于VulSniper、VulMPFF和MGVD等基于深度学习的漏洞检测方法提高了10.4%~132.9%,平均提高约52.9%。 展开更多
关键词 源代码漏洞检测 代码属性图 图神经网络 中心性分析 自注意力机制
在线阅读 下载PDF
基于多元语义图的二进制代码相似性检测方法
17
作者 张璐 贾鹏 刘嘉勇 《信息网络安全》 北大核心 2025年第10期1589-1603,共15页
二进制代码相似性检测是代码克隆、漏洞搜索、软件盗窃检测等应用的基础。然而,二进制代码在经过编译后丢失了源代码的丰富语义信息,同时由于编译过程的多样性,这些代码通常缺乏有效的特征表达。针对这一挑战,文章提出一种创新的相似性... 二进制代码相似性检测是代码克隆、漏洞搜索、软件盗窃检测等应用的基础。然而,二进制代码在经过编译后丢失了源代码的丰富语义信息,同时由于编译过程的多样性,这些代码通常缺乏有效的特征表达。针对这一挑战,文章提出一种创新的相似性检测架构——SiamGGCN,该架构融合了门控图神经网络和注意力机制,并引入了一种多元语义图。该多元语义图有效结合汇编语言的控制流信息、顺序流信息和数据流信息,为二进制代码的相似性检测提供了更加准确和全面的语义解析。文章在多个数据集和广泛的场景下对所提方法进行了实验验证。实验结果表明,SiamGGCN在精确率和召回率上均显著优于现有方法,充分证明了其在二进制代码相似性检测领域的优越性能和应用潜力。 展开更多
关键词 代码相似性 二进制分析 图神经网络 图嵌入
在线阅读 下载PDF
采用轻量级卷积神经网络的H.266/通用视频编码跨分量预测
18
作者 邹承益 万帅 +1 位作者 朱志伟 尹宇杰 《西安交通大学学报》 北大核心 2025年第2期180-188,共9页
为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考... 为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考样本之间的空间关系,并应用于边界色度参考样本生成色度预测样本。为降低编解码复杂度,设计网络在二维完成特征融合和预测,优化了现有的同组参数处理不同块大小的训练策略。并且,引入宽度可变卷积,根据不同的块大小调整网络参数。实验结果表明:与H.266/VVC测试模型VTM18.0相比,所提网络在Y(亮度分量)、Cb(蓝色色度分量)、Cr(红色色度分量)上分别实现了0.30%、2.46%、2.25%的码率节省。与其他基于卷积神经网络的跨分量预测方法相比,有效地降低了网络参数和推理复杂度,分别节省了约10%的编码时间和19%的解码时间。 展开更多
关键词 通用视频编码 跨分量预测 轻量级卷积神经网络 注意力机制 宽度可变卷积
在线阅读 下载PDF
基于FCNN的极化码分区译码算法研究
19
作者 罗颖 李晓记 王家明 《光通信技术》 北大核心 2025年第3期79-82,共4页
为了降低极化码神经网络译码器在训练阶段的维度限制,设计了一种基于全连接神经网络(FCNN)的串行抵消(SC)分区译码器,通过将极化码译码树划分为两个区域,并分别使用不同参数设置的FCNN进行处理,从而减少对大规模训练数据的需求。仿真结... 为了降低极化码神经网络译码器在训练阶段的维度限制,设计了一种基于全连接神经网络(FCNN)的串行抵消(SC)分区译码器,通过将极化码译码树划分为两个区域,并分别使用不同参数设置的FCNN进行处理,从而减少对大规模训练数据的需求。仿真结果表明:在加性高斯白噪声信道中,当信噪比为1~5 dB时,FCNN-SC译码器性能接近于SC译码算法;当信噪比为1.5~3 dB时,FCNN-SC译码器相较于FCNN译码器有0.5 dB左右的编码增益,且训练阶段所需的数据集更小,仅为FCNN译码器的一半左右。 展开更多
关键词 极化码 串行抵消译码算法 全连接神经网络 神经网络译码器 深度学习
在线阅读 下载PDF
基于余弦校验关系的卷积神经网络LDPC码盲识别
20
作者 陈文洁 张浦 +2 位作者 史高翔 刘林 刘烜 《系统工程与电子技术》 北大核心 2025年第9期3117-3125,共9页
针对低信噪比环境下低密度奇偶校验(low density parity check,LDPC)码的识别率低的问题,提出了一种基于余弦校验关系分布的卷积神经网络(convolutional neural network,CNN)算法。该算法基于码字与正确和错误校验矩阵的余弦校验关系统... 针对低信噪比环境下低密度奇偶校验(low density parity check,LDPC)码的识别率低的问题,提出了一种基于余弦校验关系分布的卷积神经网络(convolutional neural network,CNN)算法。该算法基于码字与正确和错误校验矩阵的余弦校验关系统计分布间的差异性,利用LDPC码与候选集校验矩阵计算得到的余弦校验关系的统计特性作为CNN的输入,利用CNN的深层信息挖掘能力,设计一种结构简单的四层CNN模型,实现LDPC码的有效识别。仿真结果表明,仅使用一个码字的条件下,在信噪比为3.25 dB时,对码率1/2、2/3B、3/4A、3/4B、5/6,码长2 304的LDPC码的正确识别率达到90%以上,与传统算法相比,性能提升了0.25~1.25 dB。 展开更多
关键词 低密度奇偶校验码 闭集识别 余弦校验关系 卷积神经网络
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部