Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learn...Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learning can establish nonlinear relationships between seismic data and model parameters.However,seismic data lacks low-frequency and contains noise,which increases the non-uniqueness of the solutions.The conventional inversion method based on deep learning can only establish the deterministic relationship between seismic data and parameters,and cannot quantify the uncertainty of inversion.In order to quickly quantify the uncertainty,a physics-guided deep mixture density network(PG-DMDN)is established by combining the mixture density network(MDN)with the deep neural network(DNN).Compared with Bayesian neural network(BNN)and network dropout,PG-DMDN has lower computing cost and shorter training time.A low-frequency model is introduced in the training process of the network to help the network learn the nonlinear relationship between narrowband seismic data and low-frequency impedance.In addition,the block constraints are added to the PG-DMDN framework to improve the horizontal continuity of the inversion results.To illustrate the benefits of proposed method,the PG-DMDN is compared with existing semi-supervised inversion method.Four synthetic data examples of Marmousi II model are utilized to quantify the influence of forward modeling part,low-frequency model,noise and the pseudo-wells number on inversion results,and prove the feasibility and stability of the proposed method.In addition,the robustness and generality of the proposed method are verified by the field seismic data.展开更多
The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features...The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features of aircraft trajectories.Low anomaly detection accuracy still exists due to the high-dimensionality,heterogeneity and temporality of flight trajectory data.To this end,this paper proposes an abnormal trajectory detection method based on the deep mixture density network(DMDN)to detect flights with unusual data patterns and evaluate flight trajectory safety.The technique consists of two components:Utilization of the deep long short-term memory(LSTM)network to encode features of flight trajectories effectively,and parameterization of the statistical properties of flight trajectory using the Gaussian mixture model(GMM).Experiment results on Guangzhou Baiyun International Airport terminal airspace show that the proposed method can effectively capture the statistical patterns of aircraft trajectories.The model can detect abnormal flights with elevated risks and its performance is superior to two mainstream methods.The proposed model can be used as an assistant decision-making tool for air traffic controllers.展开更多
基金the sponsorship of Shandong Province Foundation for Laoshan National Laboratory of Science and Technology Foundation(LSKJ202203400)National Natural Science Foundation of China(42174139,42030103)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136)。
文摘Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learning can establish nonlinear relationships between seismic data and model parameters.However,seismic data lacks low-frequency and contains noise,which increases the non-uniqueness of the solutions.The conventional inversion method based on deep learning can only establish the deterministic relationship between seismic data and parameters,and cannot quantify the uncertainty of inversion.In order to quickly quantify the uncertainty,a physics-guided deep mixture density network(PG-DMDN)is established by combining the mixture density network(MDN)with the deep neural network(DNN).Compared with Bayesian neural network(BNN)and network dropout,PG-DMDN has lower computing cost and shorter training time.A low-frequency model is introduced in the training process of the network to help the network learn the nonlinear relationship between narrowband seismic data and low-frequency impedance.In addition,the block constraints are added to the PG-DMDN framework to improve the horizontal continuity of the inversion results.To illustrate the benefits of proposed method,the PG-DMDN is compared with existing semi-supervised inversion method.Four synthetic data examples of Marmousi II model are utilized to quantify the influence of forward modeling part,low-frequency model,noise and the pseudo-wells number on inversion results,and prove the feasibility and stability of the proposed method.In addition,the robustness and generality of the proposed method are verified by the field seismic data.
基金supported in part by the National Natural Science Foundation of China(Nos.62076126,52075031)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX19_0013)。
文摘The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features of aircraft trajectories.Low anomaly detection accuracy still exists due to the high-dimensionality,heterogeneity and temporality of flight trajectory data.To this end,this paper proposes an abnormal trajectory detection method based on the deep mixture density network(DMDN)to detect flights with unusual data patterns and evaluate flight trajectory safety.The technique consists of two components:Utilization of the deep long short-term memory(LSTM)network to encode features of flight trajectories effectively,and parameterization of the statistical properties of flight trajectory using the Gaussian mixture model(GMM).Experiment results on Guangzhou Baiyun International Airport terminal airspace show that the proposed method can effectively capture the statistical patterns of aircraft trajectories.The model can detect abnormal flights with elevated risks and its performance is superior to two mainstream methods.The proposed model can be used as an assistant decision-making tool for air traffic controllers.