期刊文献+
共找到206篇文章
< 1 2 11 >
每页显示 20 50 100
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
1
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 Face recognition Support vector machine nearest neighbor classifier Principal component analysis.
在线阅读 下载PDF
Approximate aggregate nearest neighbor search on moving objects trajectories
2
作者 Mohammad Reza Abbasifard Hassan Naderi +1 位作者 Zohreh Fallahnejad Omid Isfahani Alamdari 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4246-4253,共8页
Aggregate nearest neighbor(ANN) search retrieves for two spatial datasets T and Q, segment(s) of one or more trajectories from the set T having minimum aggregate distance to points in Q. When interacting with large am... Aggregate nearest neighbor(ANN) search retrieves for two spatial datasets T and Q, segment(s) of one or more trajectories from the set T having minimum aggregate distance to points in Q. When interacting with large amounts of trajectories, this process would be very time-consuming due to consecutive page loads. An approximate method for finding segments with minimum aggregate distance is proposed which can improve the response time. In order to index large volumes of trajectories, scalable and efficient trajectory index(SETI) structure is used. But some refinements are provided to temporal index of SETI to improve the performance of proposed method. The experiments were performed with different number of query points and percentages of dataset. It is shown that proposed method besides having an acceptable precision, can reduce the computation time significantly. It is also shown that the main fraction of search time among load time, ANN and computing convex and centroid, is related to ANN. 展开更多
关键词 APPROXIMATE AGGREGATE k nearest neighbor(AAk nn) s
在线阅读 下载PDF
混合多策略北方苍鹰优化算法及特征选择
3
作者 鲍美英 申晋祥 +1 位作者 张景安 周建慧 《现代电子技术》 北大核心 2025年第11期121-130,共10页
针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能... 针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能力;引入非线性权重因子,改善全局勘探能力,提高算法的收敛速度和收敛精度;引入Lévy飞行,改进NGO算法采用随机猎物引导种群易陷入局部最优的缺陷,对陷入局部最优的解进行扰动,使其跳出局部最优。选取8个经典基准函数进行测试,仿真结果表明,LANGO在求解精度、收敛速度等方面都优于比较算法。LANGO与K近邻分类器相结合,用于解决特征选择问题,进行数据分类,可以对特征有效降维并提高数据分类的准确率。 展开更多
关键词 北方苍鹰优化算法 Lévy飞行 特征选择 K近邻分类器 权重因子 收敛性
在线阅读 下载PDF
一种模糊-证据kNN分类方法 被引量:13
4
作者 吕锋 杜妮 文成林 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2390-2395,共6页
已有的以k-最近邻(kNearest Neighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本... 已有的以k-最近邻(kNearest Neighbor,kNN)规则为核心的分类算法,如模糊kNN(FuzzykNN,FkNN)和证据kNN(EvidentialkNN,EkNN)等,存在着两个问题:无法区别出样本特征的差异以及忽略了邻居距训练样本类中心距离的不同所带来的影响.为此,本文提出一种模糊-证据kNN算法.首先,利用特征的模糊熵值确定每个特征的权重,基于加权欧氏距离选取k个邻居;然后,利用邻居的信息熵区别对待邻居并结合FkNN在表示信息和EkNN在融合决策方面的优势,采取先模糊化再融合的方法确定待分类样本的类别.本文的方法在UCI标准数据集上进行了测试,结果表明该方法优于已有算法. 展开更多
关键词 k-最近邻(k-nn) 加权欧氏距离 模糊熵 折扣因子 证据理论
在线阅读 下载PDF
简化的粒子群优化快速KNN分类算法 被引量:15
5
作者 李欢 焦建民 《计算机工程与应用》 CSCD 北大核心 2008年第32期57-59,共3页
提出了一种有效的k近邻分类文本分类算法,即SPSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练集中随机搜索,在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,并且去除了粒子群进化过程中粒子速度的... 提出了一种有效的k近邻分类文本分类算法,即SPSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练集中随机搜索,在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,并且去除了粒子群进化过程中粒子速度的影响,从而可以更快速地找到测试样本的k个近邻.通过验证算法的有效性表明,在查找k近邻相同时,SPOSKNN算法的分类精度高于基本KNN算法。 展开更多
关键词 K 近邻分类器 粒子群优化算法 相似度
在线阅读 下载PDF
基于k-NN和SCATS交通数据的路段行程时间估计方法 被引量:5
6
作者 姜桂艳 李琦 董硕 《西南交通大学学报》 EI CSCD 北大核心 2013年第2期343-349,共7页
为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏... 为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s. 展开更多
关键词 悉尼自适应交通控制系统 路段行程时间估计 K近邻算法 因子分析
在线阅读 下载PDF
基于EK-NN的水声目标识别算法研究 被引量:3
7
作者 张扬 杨建华 侯宏 《声学技术》 CSCD 北大核心 2016年第1期15-19,共5页
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指... 针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。 展开更多
关键词 水声目标识别 证据理论 证据K类近邻算法(EK-nn) 特征向量 组合规则
在线阅读 下载PDF
基于TBM的自适应模糊k-NN分类器 被引量:1
8
作者 刘邱云 付雪峰 吴根秀 《计算机工程》 CAS CSCD 北大核心 2009年第16期183-185,188,共4页
针对训练模式类标签不精确的识别问题,提出基于可传递信度模型的自适应模糊k-NN(k-Nearest Neighbor)分类器。利用可传递信度模型结合模糊集理论和可能性理论并运用pignistic变换,对待识别模式真正所属的类做出决策。采用梯度下降最小... 针对训练模式类标签不精确的识别问题,提出基于可传递信度模型的自适应模糊k-NN(k-Nearest Neighbor)分类器。利用可传递信度模型结合模糊集理论和可能性理论并运用pignistic变换,对待识别模式真正所属的类做出决策。采用梯度下降最小化误差函数,以实现参数的自适应学习。实验结果表明,该分类器误分类率低、鲁棒性强。 展开更多
关键词 可传递信度模型 自适应 k-nn分类器 pignistic概率 梯度下降
在线阅读 下载PDF
基于剪枝加权k-NN算法的雷达电磁行为识别 被引量:1
9
作者 程远国 唐文杰 满欣 《海军工程大学学报》 CAS 北大核心 2020年第3期7-11,共5页
为了更好地实施电子干扰和欺骗,针对目标雷达电磁行为识别问题,提出了一种新的算法。首先,给出了雷达电磁行为的形式化表述,并在此基础上将各项属性参数进行预处理;然后,通过改进的k-最近邻分类算法(k-nearest-neighbor classifier,k-NN... 为了更好地实施电子干扰和欺骗,针对目标雷达电磁行为识别问题,提出了一种新的算法。首先,给出了雷达电磁行为的形式化表述,并在此基础上将各项属性参数进行预处理;然后,通过改进的k-最近邻分类算法(k-nearest-neighbor classifier,k-NN)对数据进行处理,从而对未知的雷达电磁行为进行识别。实验结果表明:改进的算法引入剪枝加权策略可加强其分类识别能力,在分类准确率和时间效率上较原算法有一定的改善,对于雷达电磁行为的识别是有效可行的。 展开更多
关键词 雷达电磁行为 k-最近邻分类算法 分类识别
在线阅读 下载PDF
基于多流形的单样本人脸模糊分类算法
10
作者 徐洁 杨长茂 +1 位作者 陈建平 王文琰 《计算机工程与设计》 北大核心 2025年第3期719-725,共7页
为解决单个人脸样本分类中样本数量不足的问题,提出一种多流形模糊分类算法(FMMC)。通过分割图像增加“样本”数量,构造类别子流形。引入模糊集理论,定义类别流形隶属度,弱化不同类别子流形上语义相同的图块相似度,强化同一类别子流形... 为解决单个人脸样本分类中样本数量不足的问题,提出一种多流形模糊分类算法(FMMC)。通过分割图像增加“样本”数量,构造类别子流形。引入模糊集理论,定义类别流形隶属度,弱化不同类别子流形上语义相同的图块相似度,强化同一类别子流形上不同位置图块的类别信息相关性,有效限制离群图块对分类结果的影响,提高分类的性能。在3个公开人脸数据库上进行实验,其结果表明,FMMC对单个样本问题的分类可行且有效。 展开更多
关键词 单样本 K最近邻分类器 模糊集 多流形 切割 流形隶属度 分类
在线阅读 下载PDF
基于后验概率制导的B-KNN文本分类方法 被引量:1
11
作者 周红鹃 祖永亮 《计算机工程》 CAS CSCD 北大核心 2011年第21期114-116,共3页
针对K最近邻(KNN)方法分类准确率高但分类效率较低的特点,提出基于后验概率制导的贝叶斯K最近邻(B-KNN)方法。利用测试文本的后验概率信息对训练集多路静态搜索树进行剪枝,在被压缩的候选类型空间内查找样本的K个最近邻,从而在保证分类... 针对K最近邻(KNN)方法分类准确率高但分类效率较低的特点,提出基于后验概率制导的贝叶斯K最近邻(B-KNN)方法。利用测试文本的后验概率信息对训练集多路静态搜索树进行剪枝,在被压缩的候选类型空间内查找样本的K个最近邻,从而在保证分类准确率的同时提高KNN方法的效率。实验结果表明,与KNN相比,B-KNN的性能有较大提升,更适用于具有较深层次类型空间的文本分类应用。 展开更多
关键词 文本分类 后验概率 贝叶斯分类器 K最近邻方法 贝叶斯K最近邻方法
在线阅读 下载PDF
动态网络空间中的k-NN查询 被引量:3
12
作者 殷晓岚 《电子学报》 EI CAS CSCD 北大核心 2011年第2期389-394,共6页
随着无线通讯应用的持续增长和定位技术的发展,如何有效率的应答大量移动对象的查询请求以及基于位置的服务(location-based services LBS)变得越来越重要,k-NN查询是其中的重要服务功能.本文提出了一种解决动态网络中静态对象k-NN查询... 随着无线通讯应用的持续增长和定位技术的发展,如何有效率的应答大量移动对象的查询请求以及基于位置的服务(location-based services LBS)变得越来越重要,k-NN查询是其中的重要服务功能.本文提出了一种解决动态网络中静态对象k-NN查询算法,该算法先将网络以目标对象为中心进行网络划分,通过定位原始对象在网络上的位置来计算位置相关查询.同时还分析了算法的复杂性,给出了实验比较. 展开更多
关键词 移动对象 空间数据网络库 距离索引 K-nn
在线阅读 下载PDF
深度优先遍历Δ-tree的非递归KNN查询 被引量:1
13
作者 刘艳 郝忠孝 《计算机工程与应用》 CSCD 北大核心 2011年第15期6-8,28,共4页
kNN查询是高维数据库中最重要的操作之一,尽管它在数据库研究中得到了极大的关注,但很少有关于主存数据库kNN查询的工作。充分利用kNN查询自身的特点,基于高效的主存索引Δ-tree设计了一种新的kNN查询算法NR_DF_knn_Search,该算法采用... kNN查询是高维数据库中最重要的操作之一,尽管它在数据库研究中得到了极大的关注,但很少有关于主存数据库kNN查询的工作。充分利用kNN查询自身的特点,基于高效的主存索引Δ-tree设计了一种新的kNN查询算法NR_DF_knn_Search,该算法采用非递归方式深度优先搜索Δ-tree中距离查询点较近的叶子节点,能够快速找到较优的kNN候选,更新修剪距离,加大剪枝力度,缩小搜索空间,从而提高kNN查询效率。通过实验对该算法进行了估价,结果证明该算法是有效的。 展开更多
关键词 高维索引 主存knn查询 非递归 最近邻查询 深度优先搜索
在线阅读 下载PDF
二维空间中基于约束关系的RNN查询算法 被引量:3
14
作者 王宝宗 刘永山 时玉 《计算机工程》 CAS CSCD 北大核心 2008年第16期69-71,共3页
反最近邻(RNN)查询问题是空间数据库中的研究热点问题,但传统算法主要集中在对整个数据集的查询。该文把约束关系的概念引入到了RNN查询中,给出在约束关系下如何利用索引结构进行查询的方法,并根据NN查询和RNN查询问题的内在联系给出相... 反最近邻(RNN)查询问题是空间数据库中的研究热点问题,但传统算法主要集中在对整个数据集的查询。该文把约束关系的概念引入到了RNN查询中,给出在约束关系下如何利用索引结构进行查询的方法,并根据NN查询和RNN查询问题的内在联系给出相应求解CRNN问题的算法。实验表明该算法比传统算法更能提高查询效率。 展开更多
关键词 最近邻查询 反近邻查询 约束关系反最近邻 约束关系
在线阅读 下载PDF
基于ICA和NFL与NN联合分类器的人脸识别 被引量:3
15
作者 余慧海 申金媛 刘润杰 《计算机工程与应用》 CSCD 北大核心 2008年第26期183-185,共3页
提出了一种基于最近邻特征线(NFL)与最近邻(NN)联合分类器进行人脸识别的方法。首先对人脸图像用主成分分析(PCA)降维,然后用快速独立变量分析(FastICA)提取独立基,分类时采用最近邻特征线和最近邻分类器的联合分类器进行分类。该方法... 提出了一种基于最近邻特征线(NFL)与最近邻(NN)联合分类器进行人脸识别的方法。首先对人脸图像用主成分分析(PCA)降维,然后用快速独立变量分析(FastICA)提取独立基,分类时采用最近邻特征线和最近邻分类器的联合分类器进行分类。该方法综合了NFL和NN的优势,充分利用了同类之间相似,距离最短的性质。实验表明此方法提高了人脸识别率,是一种可行的人脸识别方法。 展开更多
关键词 主分量分析 独立变量分析 最近邻特征线分类器 最近邻分类器
在线阅读 下载PDF
基于双维度EKNN的滚动轴承早期故障分类算法 被引量:3
16
作者 彭成 贺婧 +2 位作者 唐朝晖 陈青 桂卫华 《计算机集成制造系统》 EI CSCD 北大核心 2021年第1期90-101,共12页
为提高对滚动轴承早期故障识别的精确度,提出一种基于混合特征提取的故障分类模型。该模型利用类内紧致性和类间重叠性识别出次优特征组,作为增强K近邻分类器(EKNN)的输入,并以距离和密度双维度计算,得到最大平均分类精确度,进而输出最... 为提高对滚动轴承早期故障识别的精确度,提出一种基于混合特征提取的故障分类模型。该模型利用类内紧致性和类间重叠性识别出次优特征组,作为增强K近邻分类器(EKNN)的输入,并以距离和密度双维度计算,得到最大平均分类精确度,进而输出最优早期故障特征组,对未知数据进行分类来检测故障。实验采集滚动轴承在低速运行下的早期故障声发射(AE)信号,对所提算法以及现有5种算法进行对比分析,验证了其对滚动轴承早期故障诊断具有更好的表现。 展开更多
关键词 声发射信号 增强K近邻分类器 滚动轴承 早期故障分类 故障诊断
在线阅读 下载PDF
基于中智KNN的齿轮箱故障诊断方法 被引量:14
17
作者 王栋璀 丁云飞 朱晨烜 《振动与冲击》 EI CSCD 北大核心 2019年第20期148-153,共6页
齿轮箱在旋转机械设备中应用广泛,研究齿轮箱的故障诊断方法意义重大。为提高齿轮箱故障的预警诊断准确度,提出了基于中智KNN(Neutrosophic K-Nearest Neighbor,NKNN)的齿轮箱故障诊断方法。该方法利用小波包对信号特征进行提取,并构建... 齿轮箱在旋转机械设备中应用广泛,研究齿轮箱的故障诊断方法意义重大。为提高齿轮箱故障的预警诊断准确度,提出了基于中智KNN(Neutrosophic K-Nearest Neighbor,NKNN)的齿轮箱故障诊断方法。该方法利用小波包对信号特征进行提取,并构建出故障样本集,借助中智理论对样本的特征权重进行重新分配,建立起基于中智KNN决策规则下的故障诊断模型,并提出了中智划分的概念。实验表明,该方法有效地提升了分类精度和鲁棒性,弥补了传统KNN同贡献权重分配的缺陷,其中智划分的结果可以作为分析齿轮箱混合故障诊断的参考依据。 展开更多
关键词 齿轮箱 中智理论 K最近邻分类器 故障诊断
在线阅读 下载PDF
基于样本空间分解的kNN分类器设计原理 被引量:1
18
作者 逄玉俊 徐涛 +1 位作者 李元 张成 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2017年第11期1218-1223,共6页
针对k NN分类器在海量数据集中搜索k近邻计算复杂、耗时长、存储空间大等缺点,提出以单元属性赋值为基础的分类器设计原理和实施方案.分类器将待分类点映射到其所在单元,对待识别单元内的点在其相应窗口内生成k近邻集,并按kNN准则做出... 针对k NN分类器在海量数据集中搜索k近邻计算复杂、耗时长、存储空间大等缺点,提出以单元属性赋值为基础的分类器设计原理和实施方案.分类器将待分类点映射到其所在单元,对待识别单元内的点在其相应窗口内生成k近邻集,并按kNN准则做出类属决策或拒绝决策.对某类样本占明显优势属性单元内的点直接按该类做出类属决策;对具有与给定样本集弱关联以及任一类样本不占优势属性单元内的点和待识型单元内可拒绝决策点给出相应处理办法.同时,对提高分类速度和精度,解决单元分割问题,选定有关参数,估计错分率等进行讨论并提出相应对策.通过仿真实验,与kNN分类器对比分析,进一步证明本文方法的有效性. 展开更多
关键词 数据挖掘 Knn分类器 大数据 样本空间分解 模式识别
在线阅读 下载PDF
基于中心向量的多级分类KNN算法研究 被引量:10
19
作者 刘述昌 张忠林 《计算机工程与科学》 CSCD 北大核心 2017年第9期1758-1764,共7页
针对KNN算法在中文文本分类时的两个不足:训练样本分布不均,分类时计算开销大的问题,在已有改进算法的基础上进行了更深入的研究,提出多级分类KNN算法。算法首先引入基于密度的思想对训练样本进行调整,通过样本裁减技术使样本分布更趋... 针对KNN算法在中文文本分类时的两个不足:训练样本分布不均,分类时计算开销大的问题,在已有改进算法的基础上进行了更深入的研究,提出多级分类KNN算法。算法首先引入基于密度的思想对训练样本进行调整,通过样本裁减技术使样本分布更趋于理想的均匀状态,同时计算各类别的类中心向量。在保证类中心向量准确性的前提条件下,使分类阶段的复杂计算提前到分类器的训练过程中。最后一级选用合适的m值(预选类别个数),根据最近邻思想对待分类文本进行所属类别判定。实验结果表明,该算法在不损失分类精度的情况下,不仅降低了计算复杂度,而且显著提高了分类速度。 展开更多
关键词 文本分类 多级分类器 类中心向量 K最近邻
在线阅读 下载PDF
多颜色模型分割自学习k-NN设备状态识别方法 被引量:2
20
作者 郭雪梅 刘桂雄 《中国测试》 CAS 北大核心 2016年第4期107-110,共4页
在浪涌测试中,由于每次识别对象不同,直接采用特征匹配每次测试前需要根据受试设备重新训练样本。先根据图像中高亮度点、白光所占比例,决策用于图像分割的颜色模型(L*a*b*、HSL、HSV),实现自适应分割;其次,提出自学习k-NN算法,以像素数... 在浪涌测试中,由于每次识别对象不同,直接采用特征匹配每次测试前需要根据受试设备重新训练样本。先根据图像中高亮度点、白光所占比例,决策用于图像分割的颜色模型(L*a*b*、HSL、HSV),实现自适应分割;其次,提出自学习k-NN算法,以像素数n、偏心率e、密实度比r、欧拉数E为样本S特征向量X,构建数据集T0,以欧氏距离D实现样本分类;若样本置信度为k,加入预备数据集Tz′中,当Tz′满足条件,则扩充数据集Tz形成数据集Tz+1。结果证明:算法在9组各类样本(共21 600帧图像)识别中,准确度可达98.65%;并自学习扩充5组样本,距离矩阵变化较小,可见算法学习效率、学习准确度较高。 展开更多
关键词 多颜色模型 K近邻算法 自学习 浪涌测试
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部