Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the s...Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the sustainable development of cotton production.However,the effect of different growth media on the screening outcomes remains unclear.To address this,we evaluated the low P tolerance of 25 cotton cultivars through hydroponic culture at two P levels(0.01 and 0.5 mmol·L^(-1) KH_(2)PO_(4))in 2018 and field culture with two P rates(0 and 90 kg·hm^(-2),in P2O5)in 2019.Results In the hydroponic experiments,principal component analysis(PCA)showed that shoot dry weight(SDW)and P utilization efficiency in shoots(PUES)of cotton seedlings explained over 45%of the genetic variation in P nutri-tion.Cotton cultivars were subjected to comprehensive cluster analysis,utilizing agronomic traits(SDW and PUES)during the seedling stage(hydroponic)and yield and fiber quality traits during the mature stage(in field).These cultivars were grouped into four clusters:resistant,moderately resistant,moderately sensitive,and sensitive.In low P conditions(0.01 mmol·L^(-1) KH_(2)PO_(4) and 4.5 mg·kg^(-1) AP),the low-P-resistant cluster showed significantly smaller reduc-tions in SDW(54%),seed cotton yield(3%),lint yield(-2%),fiber length(-1)%),and fiber strength(-3%)compared with the low-P-sensitive cluster(75%,13%,17%,7%,and 9%,respectively).The increase in PUES(299%)in the resist-ant cluster was also significantly higher than in the sensitive cluster(131%).Four of the eight low-P-tolerant cotton cultivars identified in the field and six in the hydroponic screening overlapped in both screenings.Two cultivars overlapped in both screening in the low-P-sensitive cluster.Conclusion Based on the screenings from both field and hydroponic cultures,ZM-9131,CCRI-79,JM-958,and J-228 were identified as low-P-tolerant cotton cultivars,while JM-169,XM-33B,SCRC-28,and LNM-18 were identified as low P-sensitive cotton cultivars.The relationship between field and hydroponic screening results for low-P-tolerant cotton cultivars was strong,although field validation is still required.The low P tolerance of these cultivars was closely associ-ated with SDW and PUES.展开更多
Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism stu...Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism study of high iron red mud were carried out under the coupling conditions of multiple physical field(microwave field,gas-solid flow field and temperature field)with biomass as the reducing agent.The test results showed that under the optimal conditions,an iron concentrate with a yield of 78.4%,an iron grade of 59.23%,and a recovery rate of 86.65%was obtained.The analyses of XRD,XPS,TEM,and SEM-EDS showed that during the roasting process,the hematite in the high-iron red mud was completely converted to magnetite,and the biomass produced the reductant that provided the magnetization reaction;A large number of cracks and pores appeared in the surface of the hematite reduction product particles,which helped to induce iron minerals to undergo effective mineral phase transformation.The above study provides ideas for the phase transformation and efficient recovery of iron minerals in red mud.展开更多
The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological ...The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings.展开更多
The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personn...The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personnel from firing artillery within the cab.To investigate the overpressure characteristics of the FFICC,a foreign trade equipment model was used as the research object,and a numerical model was established to analyze the propagation of muzzle blast from the muzzle to the interior of the crew compartment under extreme firing condition.For comparative verification,the muzzle blast experiment included overpressure data from both the flow field outside the crew compartment(FFOCC)and the FFICC,as well as the acceleration data of the crew compartment structure(Str-CC).The research findings demonstrate that the overpressure-time curves of the FFICC exhibit multi-peak characteristics,while the pressure wave shows no significant discontinuity.The enclosed nature of the cab hinders the dissipation of pressure wave energy within the FFICC,leading to sustained high-amplitude overpressure.The frameskin structure helps attenuate the impact of muzzle blast on the FFICC.Conversely,local high overpressure caused by the convex or concave features of the cab's exterior significantly amplifies the overpressure amplitude within the FFICC.展开更多
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2024D01A56)the National Key Research and Develop-ment Program of China(2017YFD0201906)+2 种基金the Central Research Institutes of Basic Research and the Public Service Special Foundation(1610162022044)the China Agriculture Research System(CARS-15-11)the Agricultural Sci-ence and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the sustainable development of cotton production.However,the effect of different growth media on the screening outcomes remains unclear.To address this,we evaluated the low P tolerance of 25 cotton cultivars through hydroponic culture at two P levels(0.01 and 0.5 mmol·L^(-1) KH_(2)PO_(4))in 2018 and field culture with two P rates(0 and 90 kg·hm^(-2),in P2O5)in 2019.Results In the hydroponic experiments,principal component analysis(PCA)showed that shoot dry weight(SDW)and P utilization efficiency in shoots(PUES)of cotton seedlings explained over 45%of the genetic variation in P nutri-tion.Cotton cultivars were subjected to comprehensive cluster analysis,utilizing agronomic traits(SDW and PUES)during the seedling stage(hydroponic)and yield and fiber quality traits during the mature stage(in field).These cultivars were grouped into four clusters:resistant,moderately resistant,moderately sensitive,and sensitive.In low P conditions(0.01 mmol·L^(-1) KH_(2)PO_(4) and 4.5 mg·kg^(-1) AP),the low-P-resistant cluster showed significantly smaller reduc-tions in SDW(54%),seed cotton yield(3%),lint yield(-2%),fiber length(-1)%),and fiber strength(-3%)compared with the low-P-sensitive cluster(75%,13%,17%,7%,and 9%,respectively).The increase in PUES(299%)in the resist-ant cluster was also significantly higher than in the sensitive cluster(131%).Four of the eight low-P-tolerant cotton cultivars identified in the field and six in the hydroponic screening overlapped in both screenings.Two cultivars overlapped in both screening in the low-P-sensitive cluster.Conclusion Based on the screenings from both field and hydroponic cultures,ZM-9131,CCRI-79,JM-958,and J-228 were identified as low-P-tolerant cotton cultivars,while JM-169,XM-33B,SCRC-28,and LNM-18 were identified as low P-sensitive cotton cultivars.The relationship between field and hydroponic screening results for low-P-tolerant cotton cultivars was strong,although field validation is still required.The low P tolerance of these cultivars was closely associ-ated with SDW and PUES.
基金Project(MMCS2023OF02)supported by the Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,ChinaProject(AA23073018)supported by the Guangxi Science and Technology,ChinaProject(2024M751861)supported by the China Postdoctoral Science Foundation。
文摘Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism study of high iron red mud were carried out under the coupling conditions of multiple physical field(microwave field,gas-solid flow field and temperature field)with biomass as the reducing agent.The test results showed that under the optimal conditions,an iron concentrate with a yield of 78.4%,an iron grade of 59.23%,and a recovery rate of 86.65%was obtained.The analyses of XRD,XPS,TEM,and SEM-EDS showed that during the roasting process,the hematite in the high-iron red mud was completely converted to magnetite,and the biomass produced the reductant that provided the magnetization reaction;A large number of cracks and pores appeared in the surface of the hematite reduction product particles,which helped to induce iron minerals to undergo effective mineral phase transformation.The above study provides ideas for the phase transformation and efficient recovery of iron minerals in red mud.
基金supported by Hefei National Laboratory,Innovation Program for Quantum Science and Technology(2021ZD0300400/2021ZD0300402)the Beijing Natural Science Foundation(3252013)the China Postdoctoral Science Foundation(2024T171116).
文摘The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings.
基金supported by the National Natural Science Foundation of China(Grant No.U2341269)。
文摘The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personnel from firing artillery within the cab.To investigate the overpressure characteristics of the FFICC,a foreign trade equipment model was used as the research object,and a numerical model was established to analyze the propagation of muzzle blast from the muzzle to the interior of the crew compartment under extreme firing condition.For comparative verification,the muzzle blast experiment included overpressure data from both the flow field outside the crew compartment(FFOCC)and the FFICC,as well as the acceleration data of the crew compartment structure(Str-CC).The research findings demonstrate that the overpressure-time curves of the FFICC exhibit multi-peak characteristics,while the pressure wave shows no significant discontinuity.The enclosed nature of the cab hinders the dissipation of pressure wave energy within the FFICC,leading to sustained high-amplitude overpressure.The frameskin structure helps attenuate the impact of muzzle blast on the FFICC.Conversely,local high overpressure caused by the convex or concave features of the cab's exterior significantly amplifies the overpressure amplitude within the FFICC.