Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by u...Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.展开更多
Ternary strategy has demonstrated great potential in promoting the power conversion efficiency(PCE)of bulk heterojunction organic solar cells(BHJ OSCs).Two new polymer donors,TPQ-2 F-2 Cl and TPQ-2 F-4 F,were synthesi...Ternary strategy has demonstrated great potential in promoting the power conversion efficiency(PCE)of bulk heterojunction organic solar cells(BHJ OSCs).Two new polymer donors,TPQ-2 F-2 Cl and TPQ-2 F-4 F,were synthesized with chlorinated and fluorinated aromatic side chains,respectively,which contributed to distinct noncovalent interactions.Compared with the PM 6:L 8-BO host system,the TPQ-2 F-2 Cl based ternary OSCs obtained enhanced exciton dissociation and more balanced carrier mobility.Moreover,benefiting from the favorable miscibility of the PM 6:L 8-BO:TPQ-2 F-2 Cl blend,the ternary blending film featured a well-defined fibrillar morphology and improved molecular ordering.Consequently,the optimal PM 6:L 8-BO:TPQ-2 F-2 Cl device achieved a more outstanding PCE of 18.2%,a higher open circuit voltage(V_(oc)),and a better fill factor(FF)in comparison with the binary device(PCE=17.7%).In contrast,the addition of TPQ-2 F-4 F would generate excessive aggregation of blend,thereby reducing the PCE of ternary OSCs(16.0%).This work shows a promising idea for designing efficient third component donor polymers.展开更多
基金Project(52479115)supported by the National Natural Science Foundation of ChinaProject(2024SF-YBXM-615)supported by the Key Research and Development Program of Shaanxi Province,China+1 种基金Project(2022943)supported by the Youth Innovation Team of Shaanxi Universities,ChinaProject(300102283721)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.
基金Projects(52125306,21875286)supported by the National Natural Science Foundation of China。
文摘Ternary strategy has demonstrated great potential in promoting the power conversion efficiency(PCE)of bulk heterojunction organic solar cells(BHJ OSCs).Two new polymer donors,TPQ-2 F-2 Cl and TPQ-2 F-4 F,were synthesized with chlorinated and fluorinated aromatic side chains,respectively,which contributed to distinct noncovalent interactions.Compared with the PM 6:L 8-BO host system,the TPQ-2 F-2 Cl based ternary OSCs obtained enhanced exciton dissociation and more balanced carrier mobility.Moreover,benefiting from the favorable miscibility of the PM 6:L 8-BO:TPQ-2 F-2 Cl blend,the ternary blending film featured a well-defined fibrillar morphology and improved molecular ordering.Consequently,the optimal PM 6:L 8-BO:TPQ-2 F-2 Cl device achieved a more outstanding PCE of 18.2%,a higher open circuit voltage(V_(oc)),and a better fill factor(FF)in comparison with the binary device(PCE=17.7%).In contrast,the addition of TPQ-2 F-4 F would generate excessive aggregation of blend,thereby reducing the PCE of ternary OSCs(16.0%).This work shows a promising idea for designing efficient third component donor polymers.