Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on funct...Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on functionalized MWNTs by a modified sol-gel method. Microstructure observations show that alumina particles were homogeneously dispersed on the inside and outside of modified MWNTs surfaces. 15 wt% cobalt loading catalysts were prepared with this nanohybrid and γ-alumina as a reference, using a sol-gel technique and wet impregnation method respectively. These catalysts were characterized by TEM, XRD, N2-adsorption, H2 chemisorption and TPR. The deposition of cobalt nanoparticles synthesized by sol-gel technique on the MWNTs nanohybrid shift the reduction peaks to a low temperature, indicating higher reducibility for uniform cobalt particles. Nanohybrid also aided in high dispersion of metal clusters and high stability and performance of catalyst. The proposed MWNTs nanohybrid-supported cobalt catalysts showed the improved FTS rate (gHc/(gcat.min)), CO conversion (%), and water gas shift rate (WGS)(gcoz/(gcat.h)) of 0.012, 52, and 30E-3, respectively, as compared to those of 0.007, 25, and 18E-3, respectively, on the γ-alumina-supported cobalt catalysts with the same Co loading.展开更多
Herein, we report on the synthesis and Li-ion storage properties of the 0D–2D nanohybrid consisted of bimetal phosphorus trisulfides nanoneedles(Co_(0.5)Ni_(0.5)PS_3) and graphene nanosheets(denoted as Co_(0....Herein, we report on the synthesis and Li-ion storage properties of the 0D–2D nanohybrid consisted of bimetal phosphorus trisulfides nanoneedles(Co_(0.5)Ni_(0.5)PS_3) and graphene nanosheets(denoted as Co_(0.5)Ni_(0.5)PS_3@G). By choosing the Co_(0.5)Ni_(0.5)(OH)_2 nanoneedles as precursor, the Co_(0.5)Ni_(0.5)PS_3 derived by a simple solid-state transformation(SST) process was successfully attached onto the graphene surface.The as-prepared nanohybrids showed a superior cycling stability and rate performance for Li-ion storage.After cycling at a current density of 0.5 A g^(-1) for 500 cycles, the capacity are 456 mAh g^(-1). Particularly,the capacity can reach 302 mAh g^(-1) at a current density of 10 A g^(-1), which is 66.2% of the capacity at0.5 A g^(-1). Even cycling at a current density of 50 A g^(-1), the nanocomposite can still kept a capacity of 153 mAh g^(-1) with a capacity retention of 33.6%.展开更多
Constructing heterostructured nanohybrid is considered as a prominent route to fabricate alternative electrocatalysts to commercial Pt/C for hydrogen evolution reaction(HER).In this work,(NH_(4))_(4)[NiH_(6)Mo_(6)O_(4...Constructing heterostructured nanohybrid is considered as a prominent route to fabricate alternative electrocatalysts to commercial Pt/C for hydrogen evolution reaction(HER).In this work,(NH_(4))_(4)[NiH_(6)Mo_(6)O_(4)]·5H_(2)O polyoxometalates(NiMo_(6))are adopted as the cluster precursors for simple fabrication of heterostructured Pt-Ni_(3)Mo_(3)N nanohybrids supported by carbon black(Pt-Ni_(3)Mo_(3)N/C)without using additional N sources.The improved porosity and enhanced electronic interaction of Pt-Ni_(3)Mo_(3)N/C should be attributed to the integration of Pt with NiMo_(6),which favors the mass transport,promotes the formation of exposed catalytic sites,and benefits the regulation of intrinsic activity.Thus,the as-obtained Pt-Ni_(3)Mo_(3)N/C exhibits impressive and durable HER performance as indicated by the low overpotential of 13.7 mV at the current density of 10 mA cm^(-2) and the stable overpotential during continuous working at 100 mA cm^(-2) for 100 h.This work provides significant insights for the synthesis of new highly active heterostructured electrocatalysts for renewable energy devices.展开更多
TiO2 nanocrystals/graphene hybrids(TiO2-G) with ultrafine TiO2 nanocrystals(7 nm in size) conformally coated on ultrathin graphene nanosheets( 2 layers thick) were successfully prepared via a facile one-pot solv...TiO2 nanocrystals/graphene hybrids(TiO2-G) with ultrafine TiO2 nanocrystals(7 nm in size) conformally coated on ultrathin graphene nanosheets( 2 layers thick) were successfully prepared via a facile one-pot solvothermal route under mediated conditions.With the feature of large surface area,abundant mesopores and high thermal stability,the TiOi-G nanohybrids exhibited large reversible Li-ion storage capacity with excellent cycling stability(629 mAh·g-1 after 400 cycles at a current of 60 mA·g-1) and good rate capability(184 mAh·g-1 at a current density of 3 A·g-1) due to the synergetic effects and strong interactions between the components,showing great promise in applications for advanced energy storage devices.展开更多
We report on the synthesis and the characterisation of metal/semiconductor hybrids consisting of self-assembled CdS nanoparticles on Cd nanowires, which are grown by thermal evaporation of the mixture of CdS and Cr. T...We report on the synthesis and the characterisation of metal/semiconductor hybrids consisting of self-assembled CdS nanoparticles on Cd nanowires, which are grown by thermal evaporation of the mixture of CdS and Cr. The growth of the hybrids is attributed to the decomposition of CdS at high temperature and the strain relieving that arises mainly from the lattice mismatch between Cd and CdS. Temperature dependence of zerc^field resistance of single nanohybrid indicates that the as-produced Cd/CdS nanohybrid undergoes a metal-semiconductor transition as a natural consequence of hybrid from metallic Cd and semiconducting CdS. The metal/semiconductor hybrid property provides a promising basis for the development of novel nanoelectronic devices.展开更多
Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and ac...Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and active sites/redox states are the keys to electrochemical performance enhancement.Distinguish from the reported mono-metal or binary-metal configurations,a new ternary-metal AlCoNi-LTH is coanchored onto a highly graphitized porous N-doped carbon matrix to develop superior 3D hierarchical microporous functional energy hybrids AlCoNi-LTHs/NAC.The constructed hybrids possess superior structural durability,good electrical conductivity,and rich active sites due to the strong interfacial conjunction and favorable synergistic effect between the doped porous carbon and AlCoNi nanosheets.Consequently,the AlCoNi-LTHs/NAC hybrids demonstrate high conductivity,reasonable specific surface area,and superior specific capacitance,and the assembled hybrid battery-type supercapacitor reveals an ideal energy density of 72.6 Wh kg^(-1)at a power density of 625 W kg^(-1),which is superior to the reported devices.This strategy opens a platform to rationally design polynary transition-metal layered hydroxides and their hybrids for efficient supercapacitors.展开更多
Seawater photoelectrolysis is showing huge potential in green energy conversion field,yet it is still a formidable challenge to develop one catalyst that can drive the electrolysis reaction stably,economically and eff...Seawater photoelectrolysis is showing huge potential in green energy conversion field,yet it is still a formidable challenge to develop one catalyst that can drive the electrolysis reaction stably,economically and efficiently.Motivated by this point,the inorganic–organic hybridization strategy is proposed to insitu construct one hierarchical electrode via concurrent electroless plating and polymerization,which assures the growth of boron-modulated nickel–cobalt oxyhydroxide nanoballs and photosensitive polyaniline nanochains on the self-supporting Ti-based foil(B-Co Ni OOH/PANI@TiO_(2)/Ti).Upon inducing photoelectric effect(PEE),the designed target electrode delivers overpotentials as low as 196 and 398 mV at 100 mA cm^(-2)for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively,corresponding to an activity enhancement by about 15%as compared to those without PEE.Inspiringly,when served as bifunctional electrocatalysts for overall seawater electrolysis,it can stably maintain at 200 mA cm^(-2)with negligible decay over 72 h.Further analysis reveals that the exceptional catalytic performance can be credit to the B-CoNiOOH,polyaniline(PANI)and TiO_(2)subunit coupling-induced physically and chemically synergistic catalysis effect such as admirable composition stability,photoelectric function and adhesion capability.The finding in this contribution may trigger much more broad interest to the novel hybrid catalysts consisting of photosensitive polymer and transition metal-based electrocatalysts.展开更多
Naturally-occurringβ-glucans are mostly investigated for their antitumor activity and immunomodulatory property.They have been widely regarded as a natural source for functional foods and pharmaceuticals.However,the ...Naturally-occurringβ-glucans are mostly investigated for their antitumor activity and immunomodulatory property.They have been widely regarded as a natural source for functional foods and pharmaceuticals.However,the physico-chemically stable and biocompatible properties ofβ-glucans are rarely explored as a coating material for nanomaterials to overcome the problems of aggregation and cytotoxicity.This article reviews on the exploration ofβ-glucans,in particular those derived from mushrooms,as a natural coating material to modify the surface properties of bioactive substances as a relatively simple and cost-effective strategy to produce stable and biocompatible nanohybrids used for biopharmaceutical use.It is envisaged that suchβ-glucan-based coating method will provide new opportunities to design biocompatible functional nanomaterials for wider clinical applications.展开更多
基金supported by the Research Council of the Research Institute of Petroleum Industrythe Research and Development of the National Iranian Oil Company
文摘Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on functionalized MWNTs by a modified sol-gel method. Microstructure observations show that alumina particles were homogeneously dispersed on the inside and outside of modified MWNTs surfaces. 15 wt% cobalt loading catalysts were prepared with this nanohybrid and γ-alumina as a reference, using a sol-gel technique and wet impregnation method respectively. These catalysts were characterized by TEM, XRD, N2-adsorption, H2 chemisorption and TPR. The deposition of cobalt nanoparticles synthesized by sol-gel technique on the MWNTs nanohybrid shift the reduction peaks to a low temperature, indicating higher reducibility for uniform cobalt particles. Nanohybrid also aided in high dispersion of metal clusters and high stability and performance of catalyst. The proposed MWNTs nanohybrid-supported cobalt catalysts showed the improved FTS rate (gHc/(gcat.min)), CO conversion (%), and water gas shift rate (WGS)(gcoz/(gcat.h)) of 0.012, 52, and 30E-3, respectively, as compared to those of 0.007, 25, and 18E-3, respectively, on the γ-alumina-supported cobalt catalysts with the same Co loading.
基金the financial support from Singapore MOE AcRF Tier 1 under grant Nos.RG113/15 and 2016T1-002-065Singapore EMA project EIRP 12/NRF2015EWTEIRP002-008
文摘Herein, we report on the synthesis and Li-ion storage properties of the 0D–2D nanohybrid consisted of bimetal phosphorus trisulfides nanoneedles(Co_(0.5)Ni_(0.5)PS_3) and graphene nanosheets(denoted as Co_(0.5)Ni_(0.5)PS_3@G). By choosing the Co_(0.5)Ni_(0.5)(OH)_2 nanoneedles as precursor, the Co_(0.5)Ni_(0.5)PS_3 derived by a simple solid-state transformation(SST) process was successfully attached onto the graphene surface.The as-prepared nanohybrids showed a superior cycling stability and rate performance for Li-ion storage.After cycling at a current density of 0.5 A g^(-1) for 500 cycles, the capacity are 456 mAh g^(-1). Particularly,the capacity can reach 302 mAh g^(-1) at a current density of 10 A g^(-1), which is 66.2% of the capacity at0.5 A g^(-1). Even cycling at a current density of 50 A g^(-1), the nanocomposite can still kept a capacity of 153 mAh g^(-1) with a capacity retention of 33.6%.
基金the financial support from the Key Research and Development Program sponsored by the Ministry of Science and Technology(MOST)(2022YFB4002000,2022YFA1203400)the National Natural Science Foundation of China(22102172,22072145,22372155,22005294,21925205,21721003)。
文摘Constructing heterostructured nanohybrid is considered as a prominent route to fabricate alternative electrocatalysts to commercial Pt/C for hydrogen evolution reaction(HER).In this work,(NH_(4))_(4)[NiH_(6)Mo_(6)O_(4)]·5H_(2)O polyoxometalates(NiMo_(6))are adopted as the cluster precursors for simple fabrication of heterostructured Pt-Ni_(3)Mo_(3)N nanohybrids supported by carbon black(Pt-Ni_(3)Mo_(3)N/C)without using additional N sources.The improved porosity and enhanced electronic interaction of Pt-Ni_(3)Mo_(3)N/C should be attributed to the integration of Pt with NiMo_(6),which favors the mass transport,promotes the formation of exposed catalytic sites,and benefits the regulation of intrinsic activity.Thus,the as-obtained Pt-Ni_(3)Mo_(3)N/C exhibits impressive and durable HER performance as indicated by the low overpotential of 13.7 mV at the current density of 10 mA cm^(-2) and the stable overpotential during continuous working at 100 mA cm^(-2) for 100 h.This work provides significant insights for the synthesis of new highly active heterostructured electrocatalysts for renewable energy devices.
基金supported by the National Natural Science Foundation of China(51071131)the Program for New Century Excellent Talents in University(NCET-10-0890)
文摘TiO2 nanocrystals/graphene hybrids(TiO2-G) with ultrafine TiO2 nanocrystals(7 nm in size) conformally coated on ultrathin graphene nanosheets( 2 layers thick) were successfully prepared via a facile one-pot solvothermal route under mediated conditions.With the feature of large surface area,abundant mesopores and high thermal stability,the TiOi-G nanohybrids exhibited large reversible Li-ion storage capacity with excellent cycling stability(629 mAh·g-1 after 400 cycles at a current of 60 mA·g-1) and good rate capability(184 mAh·g-1 at a current density of 3 A·g-1) due to the synergetic effects and strong interactions between the components,showing great promise in applications for advanced energy storage devices.
基金Project supported by the National Natural Science Foundation of China (Grant No 60806005)
文摘We report on the synthesis and the characterisation of metal/semiconductor hybrids consisting of self-assembled CdS nanoparticles on Cd nanowires, which are grown by thermal evaporation of the mixture of CdS and Cr. The growth of the hybrids is attributed to the decomposition of CdS at high temperature and the strain relieving that arises mainly from the lattice mismatch between Cd and CdS. Temperature dependence of zerc^field resistance of single nanohybrid indicates that the as-produced Cd/CdS nanohybrid undergoes a metal-semiconductor transition as a natural consequence of hybrid from metallic Cd and semiconducting CdS. The metal/semiconductor hybrid property provides a promising basis for the development of novel nanoelectronic devices.
基金financial support from the Chang Jiang Scholars Program(51073047)the National Natural Science Foundation of China(51773049)+5 种基金the China Aerospace Science and Technology Corporation-Harbin Institute of Technology Joint Center for Technology Innovation Fund(HIT15-1A01)the Harbin city science and technology projects(2013DB4BP031 and RC2014QN017035)the Fundamental Research Funds for the Central Universities(HIT.OCEF.2021028)the Natural Science Funds of Heilongjiang Province(ZD2019B001)the Heilongjiang Touyan Team(HITTY-20190033)the funds from Chongqing Research Institute of HIT。
文摘Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and active sites/redox states are the keys to electrochemical performance enhancement.Distinguish from the reported mono-metal or binary-metal configurations,a new ternary-metal AlCoNi-LTH is coanchored onto a highly graphitized porous N-doped carbon matrix to develop superior 3D hierarchical microporous functional energy hybrids AlCoNi-LTHs/NAC.The constructed hybrids possess superior structural durability,good electrical conductivity,and rich active sites due to the strong interfacial conjunction and favorable synergistic effect between the doped porous carbon and AlCoNi nanosheets.Consequently,the AlCoNi-LTHs/NAC hybrids demonstrate high conductivity,reasonable specific surface area,and superior specific capacitance,and the assembled hybrid battery-type supercapacitor reveals an ideal energy density of 72.6 Wh kg^(-1)at a power density of 625 W kg^(-1),which is superior to the reported devices.This strategy opens a platform to rationally design polynary transition-metal layered hydroxides and their hybrids for efficient supercapacitors.
基金supported by the National Natural Science Foundation of China(22109098)the Shanghai Sailing Program(20YF1432300)+4 种基金the Shanghai Engineering Research Center for Food Rapid Detection(19DZ2251300)the Natural Science Foundation of Jiangsu Province(BK20210735)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(21KJB430043)the Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Projectthe Suzhou Key Laboratory of Functional Nano&Soft Materials。
文摘Seawater photoelectrolysis is showing huge potential in green energy conversion field,yet it is still a formidable challenge to develop one catalyst that can drive the electrolysis reaction stably,economically and efficiently.Motivated by this point,the inorganic–organic hybridization strategy is proposed to insitu construct one hierarchical electrode via concurrent electroless plating and polymerization,which assures the growth of boron-modulated nickel–cobalt oxyhydroxide nanoballs and photosensitive polyaniline nanochains on the self-supporting Ti-based foil(B-Co Ni OOH/PANI@TiO_(2)/Ti).Upon inducing photoelectric effect(PEE),the designed target electrode delivers overpotentials as low as 196 and 398 mV at 100 mA cm^(-2)for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively,corresponding to an activity enhancement by about 15%as compared to those without PEE.Inspiringly,when served as bifunctional electrocatalysts for overall seawater electrolysis,it can stably maintain at 200 mA cm^(-2)with negligible decay over 72 h.Further analysis reveals that the exceptional catalytic performance can be credit to the B-CoNiOOH,polyaniline(PANI)and TiO_(2)subunit coupling-induced physically and chemically synergistic catalysis effect such as admirable composition stability,photoelectric function and adhesion capability.The finding in this contribution may trigger much more broad interest to the novel hybrid catalysts consisting of photosensitive polymer and transition metal-based electrocatalysts.
文摘Naturally-occurringβ-glucans are mostly investigated for their antitumor activity and immunomodulatory property.They have been widely regarded as a natural source for functional foods and pharmaceuticals.However,the physico-chemically stable and biocompatible properties ofβ-glucans are rarely explored as a coating material for nanomaterials to overcome the problems of aggregation and cytotoxicity.This article reviews on the exploration ofβ-glucans,in particular those derived from mushrooms,as a natural coating material to modify the surface properties of bioactive substances as a relatively simple and cost-effective strategy to produce stable and biocompatible nanohybrids used for biopharmaceutical use.It is envisaged that suchβ-glucan-based coating method will provide new opportunities to design biocompatible functional nanomaterials for wider clinical applications.