Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and...Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance.展开更多
Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground wa...Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground water is of great significance. Compression and creep experiments on sandstone with varying water contents were conducted using a deep soft rock five-linked rheological experiment system. The experimental conditions, including water content (0%, 0.8%, 1.6%, 2.4% and 3.3%) and confining pressure (0, 6, 9 and 12 MPa), were determined based on pressure-free water absorption tests and in-situ stress measurements. The experimental results show that the compressive strength, creep failure stress, and dilatancy stress of sandstone decrease exponentially with increasing water content, while they increase exponentially with confining pressure. The ratio of lateral to axial instantaneous strain increases nearly linearly with the increase of stress, and the lateral creep strain characteristics of the sample are more significant than the axial ones. The duration of the attenuation creep stage of sandstone decreases with increasing water content and increases with increasing confining pressure. The lateral strain enters the steady-state creep stage before the axial strain, and the onset time of the accelerated creep stage of lateral strain under the failure stress is earlier than that of axial strain. The long-term strength of sandstone was determined based on the lateral steady-state creep rate curve, showing a negative exponential relationship with water content and a positive exponential relationship with confining pressure. A method for determining the long-term strength of rocks based on the ratio of lateral strain to axial strain (μc) is proposed, which is independent of water content. The research results provide a reliable theoretical basis for the analysis of the long-term stability of roadways under the influence of groundwater and the early prediction of creep failure.展开更多
Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge ga...Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.展开更多
In order to study the effects of biochar-based organic fertilizer on the accumulation of the total flavonoid contents in dandelion after sowing,the experiment applied four levels of treatments of carbon-based organic ...In order to study the effects of biochar-based organic fertilizer on the accumulation of the total flavonoid contents in dandelion after sowing,the experiment applied four levels of treatments of carbon-based organic fertilizer(0.15,0.30,0.45,and 0.60 kg•m^(-2)),and the base fertilizer that only applied conventional chemical fertilizer was used as the control.The total flavonoid contents and physiological indices of dandelion in different growth periods were determined.The results showed that the accumulation of the total flavonoid contents in leaves and roots of dandelion improved significantly by applying biochar-based organic fertilizer(0.15,0.30,0.45,and 0.60 kg•m^(-2)),with the highest total flavonoid occurred in the 0.45 kg•m^(-2) biochar-based organic fertilizer treatment.Along with dandelion growing,the total flavonoid contents in leaves were first elevated,and then decreased,with the maximum reached at 95 days after sowing(anthesis).While the total flavonoid contents in roots were elevated constantly.The total flavonoid contents accumulation in dandelion were positively correlated with net photosynthetic rate,stomatal conductance,transpiration rate,soluble sugar content,soluble protein,nitrate nitrogen,and available potassium,while negatively correlated with intercellular CO_(2) concentration.展开更多
In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,th...In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.展开更多
文摘Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance.
基金Projects(52174096, 52304110) supported by the National Natural Science Foundation of China。
文摘Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground water is of great significance. Compression and creep experiments on sandstone with varying water contents were conducted using a deep soft rock five-linked rheological experiment system. The experimental conditions, including water content (0%, 0.8%, 1.6%, 2.4% and 3.3%) and confining pressure (0, 6, 9 and 12 MPa), were determined based on pressure-free water absorption tests and in-situ stress measurements. The experimental results show that the compressive strength, creep failure stress, and dilatancy stress of sandstone decrease exponentially with increasing water content, while they increase exponentially with confining pressure. The ratio of lateral to axial instantaneous strain increases nearly linearly with the increase of stress, and the lateral creep strain characteristics of the sample are more significant than the axial ones. The duration of the attenuation creep stage of sandstone decreases with increasing water content and increases with increasing confining pressure. The lateral strain enters the steady-state creep stage before the axial strain, and the onset time of the accelerated creep stage of lateral strain under the failure stress is earlier than that of axial strain. The long-term strength of sandstone was determined based on the lateral steady-state creep rate curve, showing a negative exponential relationship with water content and a positive exponential relationship with confining pressure. A method for determining the long-term strength of rocks based on the ratio of lateral strain to axial strain (μc) is proposed, which is independent of water content. The research results provide a reliable theoretical basis for the analysis of the long-term stability of roadways under the influence of groundwater and the early prediction of creep failure.
基金supported by the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18)。
文摘Limited research has been conducted on the influences of fiber content on close-in blasting characteristics for ultrahigh-performance fiber-reinforced concrete(UHPFRC)beams.This paper aims to address this knowledge gap through experimental and mesoscale numerical methods.Experiments were conducted on ten UHPFRC beams built with varying steel fiber volumetric fractions subjected to close-in explosive conditions.Additionally,this study considered other parameters,such as the longitudinal reinforcement type and ratio.In the case of UHPFRC beams featuring normal-strength longitudinal reinforcement of diametersΦ12,Φ16,andΦ20,a reduction in maximum displacement by magnitudes of19.6%,19.5%,and 17.4%was observed,respectively,as the volumetric fractions of fiber increased from1.0%to 2.5%.In addition,increasing the longitudinal reinforcement ratio and using high-strength steel longitudinal reinforcement both significantly reduced the deformation characteristics and increase the blasting resistances of UHPFRC beams.However,the effects on the local crushing and spalling damage were not significant.A mesoscale finite element model,which considers the impacts of fiber parameters on UHPFRC beam behaviors,was also established and well correlated with the test findings.Nevertheless,parametric analyses were further conducted to examine the impacts of the steel fiber content and length and the hybrid effects of various types of microfibers and steel fibers on the blasting performance of UHPFRC beams.
基金Supported by the National Key Research and Development Project(2021YFD16009012021YFD1600902)。
文摘In order to study the effects of biochar-based organic fertilizer on the accumulation of the total flavonoid contents in dandelion after sowing,the experiment applied four levels of treatments of carbon-based organic fertilizer(0.15,0.30,0.45,and 0.60 kg•m^(-2)),and the base fertilizer that only applied conventional chemical fertilizer was used as the control.The total flavonoid contents and physiological indices of dandelion in different growth periods were determined.The results showed that the accumulation of the total flavonoid contents in leaves and roots of dandelion improved significantly by applying biochar-based organic fertilizer(0.15,0.30,0.45,and 0.60 kg•m^(-2)),with the highest total flavonoid occurred in the 0.45 kg•m^(-2) biochar-based organic fertilizer treatment.Along with dandelion growing,the total flavonoid contents in leaves were first elevated,and then decreased,with the maximum reached at 95 days after sowing(anthesis).While the total flavonoid contents in roots were elevated constantly.The total flavonoid contents accumulation in dandelion were positively correlated with net photosynthetic rate,stomatal conductance,transpiration rate,soluble sugar content,soluble protein,nitrate nitrogen,and available potassium,while negatively correlated with intercellular CO_(2) concentration.
基金supported by the National Natural Science Foundation of China(62073036,62076031)Beijing Natural Science Foundation(4242049).
文摘In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.