期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
1
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle SWARM optimization (PSO) CLOUD computing system
在线阅读 下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
2
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
3
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition (MODE/D) Pareto-optimal front
在线阅读 下载PDF
An integer multi-objective optimization model and an enhanced non-dominated sorting genetic algorithm for contraflow scheduling problem
4
作者 李沛恒 楼颖燕 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2399-2405,共7页
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor... To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity. 展开更多
关键词 hurricane evacuation contraflow scheduling multi-objective optimization NSGA-II
在线阅读 下载PDF
Multi-objective optimization of rolling schedule based on cost function for tandem cold mill 被引量:4
5
作者 陈树宗 张欣 +3 位作者 彭良贵 张殿华 孙杰 刘印忠 《Journal of Central South University》 SCIE EI CAS 2014年第5期1733-1740,共8页
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r... In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae. 展开更多
关键词 tandem cold mill multi-object optimization rolling schedule cost function simplex algorithm
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
6
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
7
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
Reactive scheduling of multiple EOSs under cloud uncertainties:model and algorithms 被引量:4
8
作者 WANG Jianjiang HU Xuejun HE Chuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期163-177,共15页
Most earth observation satellites(EOSs)are low-orbit satellites equipped with optical sensors that cannot see through clouds.Hence,cloud coverage,high dynamics,and cloud uncertainties are important issues in the sched... Most earth observation satellites(EOSs)are low-orbit satellites equipped with optical sensors that cannot see through clouds.Hence,cloud coverage,high dynamics,and cloud uncertainties are important issues in the scheduling of EOSs.The proactive-reactive scheduling framework has been proven to be effective and efficient for the uncertain scheduling problem and has been extensively employed.Numerous studies have been conducted on methods for the proactive scheduling of EOSs,including expectation,chance-constrained,and robust optimization models and the relevant solution algorithms.This study focuses on the reactive scheduling of EOSs under cloud uncertainties.First,using an example,we describe the reactive scheduling problem in detail,clarifying its significance and key issues.Considering the two key objectives of observation profits and scheduling stability,we construct a multi-objective optimization mathematical model.Then,we obtain the possible disruptions of EOS scheduling during execution under cloud uncertainties,adopting an event-driven policy for the reactive scheduling.For the different disruptions,different reactive scheduling algorithms are designed.Finally,numerous simulation experiments are conducted to verify the feasibility and effectiveness of the proposed reactive scheduling algorithms.The experimental results show that the reactive scheduling algorithms can both improve observation profits and reduce system perturbations. 展开更多
关键词 earth observation satellite(EOS) uncertainty of clouds reactive scheduling multi-objective optimization EVENT-DRIVEN HEURISTIC
在线阅读 下载PDF
考虑多重不确定性与电碳耦合交易的多微网合作博弈优化调度 被引量:12
9
作者 董雷 李扬 +2 位作者 陈盛 乔骥 蒲天骄 《电工技术学报》 EI CSCD 北大核心 2024年第9期2635-2651,共17页
双碳背景下,构建低碳运行的能源系统是实现“双碳”目标的重要方向与实施路径。为了促进多微网系统内部能源的本地消纳以及低碳经济运行,该文对不确定性环境下多微网系统的合作运行及电碳耦合交易展开研究。首先,对于每个微网,构建了电... 双碳背景下,构建低碳运行的能源系统是实现“双碳”目标的重要方向与实施路径。为了促进多微网系统内部能源的本地消纳以及低碳经济运行,该文对不确定性环境下多微网系统的合作运行及电碳耦合交易展开研究。首先,对于每个微网,构建了电转气碳捕集系统相耦合的热电联产运行模式,基于地方碳交易市场和阶梯碳交易机制,提出了多能源微网的低碳运行模型;其次,考虑到新能源发电和电力市场电价都存在不确定性的实际情况,采用机会约束和鲁棒优化的方法,以降低不确定性影响;再次,基于纳什谈判理论,建立了多个微网电碳耦合的合作博弈模型,各微网主体可同时参与到上级能源市场和地方能源市场中进行电能和碳排放配额的交易;最后,将非凸的合作博弈问题分解为两个线性可求解的子问题,进一步采用交替方向乘子法对问题进行求解。通过算例验证,该文所提方法可以有效提升各微网经济效益并减少碳排放。 展开更多
关键词 电碳耦合交易 纳什谈判 合作博弈 多微网优化调度
在线阅读 下载PDF
Cloud control for IIoT in a cloud-edge environment 被引量:1
10
作者 YAN Ce XIA Yuanqing +1 位作者 YANG Hongjiu ZHAN Yufeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1013-1027,共15页
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for... The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms. 展开更多
关键词 5G and time sensitive network(TSN) industrial Internet of Things(IIoT)workflow transmission control protocol(TCP)flows control cloud edge collaboration multi-objective optimal scheduling
在线阅读 下载PDF
计及负荷静态电压特性的多目标交易研究 被引量:8
11
作者 马瑞 贺仁睦 +3 位作者 王鹏 杨华春 张进 胡国强 《中国电机工程学报》 EI CSCD 北大核心 2005年第9期1-5,113,共6页
提出了一种基于计及负荷静态电压特性最优潮流的多目标优化交易计划新模型,并讨论了负荷模型对交易的影响约束,能够反映节点电压变化对交易的影响,从而使交易模型更加符合电力系统运行的特点;采用模糊集理论并结合内点法对模型求解;基于... 提出了一种基于计及负荷静态电压特性最优潮流的多目标优化交易计划新模型,并讨论了负荷模型对交易的影响约束,能够反映节点电压变化对交易的影响,从而使交易模型更加符合电力系统运行的特点;采用模糊集理论并结合内点法对模型求解;基于Kuhn-Tucker 一阶最优性必要条件分析了多目标竞标机理并定义了节点广义实时价格和节点电压对节点需求灵敏度等指标,从而可定量评估发电节点经济.环保等综合指标和需求节点电压对系统交易的影响.算例结果表明了该模型、算法及所定义指标的有效性。 展开更多
关键词 电压特性 电力系统运行 节点电压 多目标优化 模糊集理论 交易计划 最优潮流 负荷模型 电压变化 交易模型 模型求解 条件分析 定量评估 综合指标 新模型 内点法 灵敏度 最优性 需求 定义 发电
在线阅读 下载PDF
基于曙光 1000A 的并行查询核心系统的设计与实现 被引量:5
12
作者 李庆华 张鹏宇 邹青松 《高技术通讯》 EI CAS CSCD 1998年第4期1-5,共5页
根据曙光1000A的特点,提出了查询核心系统的设计方案;经过分析比较,选定了数据划分方法,确定了SQL子集。在此基础上,研究了物理库设计、并行事务管理、查询优化器的设计和事务的调度方法,旨在为在曙光1000A上建造并... 根据曙光1000A的特点,提出了查询核心系统的设计方案;经过分析比较,选定了数据划分方法,确定了SQL子集。在此基础上,研究了物理库设计、并行事务管理、查询优化器的设计和事务的调度方法,旨在为在曙光1000A上建造并行数据库系统奠定基础。 展开更多
关键词 并行查询 并行查询优化 并行调度 并行计算机
在线阅读 下载PDF
基于区块链的微网群交易机制及日前优化调度 被引量:2
13
作者 黄悦华 刘兴韬 +2 位作者 陈庆 张子豪 王朔浩 《科学技术与工程》 北大核心 2023年第2期610-618,共9页
随着多能微网群结构逐渐形成,传统集中式电能交易中利益分配及交易安全的问题,造成各微网主体难以积极响应交易机制,且在交易过程中存在低效性、公正性等问题。提出了一种基于区块链技术的多能微网群市场交易机制,并辅助各微网制定日前... 随着多能微网群结构逐渐形成,传统集中式电能交易中利益分配及交易安全的问题,造成各微网主体难以积极响应交易机制,且在交易过程中存在低效性、公正性等问题。提出了一种基于区块链技术的多能微网群市场交易机制,并辅助各微网制定日前调度计划。首先,通过区块链技术构建了微网群去中心化交易框架。然后,以智能合约为基础,建立了兼顾分时价格、权益系数等因素的微网群交易机制,设计了交易匹配与市场出清流程进行电能的合理分配。最后,构建多能微网日前优化调度模型,并进行交易流程模拟,为调度提供辅助决策方案。算例结果验证了基于区块链技术的微网交易机制的有效性,微网群调度模型可实现合理的交易双方匹配与电能分配。 展开更多
关键词 多能微网群 区块链 智能合约 交易机制 优化调度
在线阅读 下载PDF
奖罚机制下的互补发电系统中长期与日前嵌套鲁棒优化调度模型 被引量:6
14
作者 夏依莎 刘俊勇 +1 位作者 刘继春 高红均 《电网技术》 EI CSCD 北大核心 2021年第10期3813-3821,共9页
在多能互补系统调度中考虑诸如需求响应和抽蓄等可控元素可以应对可再生能源出力的随机性,减少结算时的电量偏差,从而增加效益。为减少可控元素备而不用造成的浪费,在梯级水光蓄联合发电能源系统中,将中长期可控元素决策优化引入系统日... 在多能互补系统调度中考虑诸如需求响应和抽蓄等可控元素可以应对可再生能源出力的随机性,减少结算时的电量偏差,从而增加效益。为减少可控元素备而不用造成的浪费,在梯级水光蓄联合发电能源系统中,将中长期可控元素决策优化引入系统日前优化调度过程中,构建了由上层的月度优化决策以及下层的日前优化调度组成的嵌套调度模型。在月度模型中考虑出清电价的不确定性构建月度鲁棒优化调度模型,获得可控元素调用日期,从而避免可控元素备而不用的情况。在多能互补发电系统日前优化调度模型中构建了弃水弃光动态奖罚机制和可中断负荷(interruptible load,IL)奖罚机制。该模型使多能互补发电系统在保证市场合同电量的同时避免了可控元素备而不用的浪费,提升了清洁能源的利用效率。最后通过实际算例分析验证了所提模型和方法的合理性和有效性。 展开更多
关键词 互补发电系统 奖罚机制 中长期交易 日前优化 鲁棒优化
在线阅读 下载PDF
基于能源区块链的综合能源系统调度优化模型及其应用 被引量:12
15
作者 张艺 施骞 《系统管理学报》 CSSCI CSCD 北大核心 2020年第6期1161-1168,共8页
综合能源服务是在能源互联网背景下产生的新型能源服务模式,在综合能源服务系统中产销主体众多,能源生产消费多元化,针对综合能源系统调度过程中存在的信息安全及损耗问题,提出基于能源区块链的综合能源服务调度优化模型。利用区块链技... 综合能源服务是在能源互联网背景下产生的新型能源服务模式,在综合能源服务系统中产销主体众多,能源生产消费多元化,针对综合能源系统调度过程中存在的信息安全及损耗问题,提出基于能源区块链的综合能源服务调度优化模型。利用区块链技术的去中心化、可信任和交易透明化等特性,构建基于区块链的综合能源服务网络架构;以系统经济效益及环保效益最大化为目标建立调度优化模型,有效降低系统运营成本,使得经济效益和环保效益得到较大提升。案例分析表明:能源区块链技术能够提高综合能源系统的安全性,保证相关数据不可篡改;同时,构建的综合能源服务调度优化模型能够为综合能源系统运营管理及调度优化问题提供决策支持与理论支撑。 展开更多
关键词 综合能源系统 区块链 调度优化 交易安全 去中心化
在线阅读 下载PDF
供电短缺下微网客户与移动储能端对端交易模式及调度策略 被引量:3
16
作者 郭倬辰 刘继春 +3 位作者 杨知方 蒲天骄 王晓辉 刘俊勇 《电网技术》 EI CSCD 北大核心 2022年第12期4873-4884,共12页
随着传统电力系统向新型电力系统转型升级,风、光等分布式能源作为微网主体电源在配电网故障发生时具备相当程度的主动支撑、调节能力。当微网预测到由于天气变化导致未来内部分布式能源供电短缺时,可提前与移动储能进行市场交易。端对... 随着传统电力系统向新型电力系统转型升级,风、光等分布式能源作为微网主体电源在配电网故障发生时具备相当程度的主动支撑、调节能力。当微网预测到由于天气变化导致未来内部分布式能源供电短缺时,可提前与移动储能进行市场交易。端对端(peer-to-peer,P2P)交易模式能保证交易实时性,适合应对紧急度较高的用电需求。设计了供电短缺下微网客户与移动储能P2P交易模式及调度策略。首先,建立微网自主运行及能量互济模型,通过划分供电范围可预测各时段微网内存在电能需求的负荷信息。然后,建立购售电主体申报模型,为双方申报行为提供依据。基于连续双向拍卖机制进行撮合匹配,并提出偏差考核及违约结算机制。交易匹配后,移动储能在交通网-配电网耦合模型基础上进行优化调度,对接需电客户。最后,通过算例验证了P2P交易模式可行性,以及移动储能调度方法的有效性。 展开更多
关键词 移动储能 微网客户 端对端交易 交通网-配电网耦合 优化调度
在线阅读 下载PDF
考虑热电余量交易的微网群优化调度 被引量:8
17
作者 杜炜 窦迅 +3 位作者 王镇 王俊 张鑫 曾鸣 《电网技术》 EI CSCD 北大核心 2020年第10期3777-3786,共10页
微网群是促进微网互动,提高能源利用效率的重要途径。针对微网群内子微网的余电余热消纳和调度问题,提出了考虑热电余量交易的微网群优化调度方法。首先,分析了微网群内的能量互济特性,构建了考虑配网运行约束的微网群运营模式,提出了... 微网群是促进微网互动,提高能源利用效率的重要途径。针对微网群内子微网的余电余热消纳和调度问题,提出了考虑热电余量交易的微网群优化调度方法。首先,分析了微网群内的能量互济特性,构建了考虑配网运行约束的微网群运营模式,提出了微网群内的余电余热交易机制。其次,基于余电余热交易,建立了考虑热电余量交易的微网群优化模型,进而求解微网群内子微网间的热电交易策略和调度方案。最后,算例表明提出的调度方法有助于提高微网群内的余电余热消纳和微网群优化调度的经济性。 展开更多
关键词 微网群 余电余热 热电余量交易 优化调度
在线阅读 下载PDF
需求侧资源灵活性刻画及其在日前优化调度中的应用 被引量:60
18
作者 吴界辰 艾欣 胡俊杰 《电工技术学报》 EI CSCD 北大核心 2020年第9期1973-1984,共12页
由于分布式能源(DERs)在配电网的渗透率不断提高以及电力改革对售电侧的放开,充分发挥需求侧资源的灵活性变得愈加重要。该文以电动汽车(EV)和暖通空调(HVAC)两种典型的需求侧资源为例,在计及设备的物理特性和人为、环境因素的影响下,... 由于分布式能源(DERs)在配电网的渗透率不断提高以及电力改革对售电侧的放开,充分发挥需求侧资源的灵活性变得愈加重要。该文以电动汽车(EV)和暖通空调(HVAC)两种典型的需求侧资源为例,在计及设备的物理特性和人为、环境因素的影响下,采用极端能量场景方法建立通用虚拟电池(VB)模型用于刻画其资源的灵活性。在此基础上,进一步针对交互平台参与日前电力市场情况提出了日前优化调度模型。仿真算例表明基于通用VB模型的日前优化调度可以分配日前调度计划及备用容量。此外,通过仿真验证了所提模型的有效性,并结合算例结果分析了其在运算效率与信息安全方面的优越性。 展开更多
关键词 需求侧资源灵活性 交互平台 通用虚拟电池模型 日前优化调度 备用容量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部