期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
求解最大团问题的并行多层图划分方法 被引量:2
1
作者 顾军华 霍士杰 +2 位作者 武君艳 尹君 张素琪 《计算机应用》 CSCD 北大核心 2018年第12期3425-3432,共8页
在当今大数据环境下,针对图中节点的海量性和分析的复杂性对最大团问题的研究在速度和精度上都提出了更高要求的问题,提出求解最大团问题的并行多层图划分方法(PMGP_SMC)。首先,提出一种新的多层图划分(MGP)方法,在保持原有图的团结构... 在当今大数据环境下,针对图中节点的海量性和分析的复杂性对最大团问题的研究在速度和精度上都提出了更高要求的问题,提出求解最大团问题的并行多层图划分方法(PMGP_SMC)。首先,提出一种新的多层图划分(MGP)方法,在保持原有图的团结构不被破坏的情况下对大规模图例划分产生子图,并对规模较大的子图进行多层图划分,进一步缩小子图规模,并且应用Graph X图计算框架实现MGP,形成并行MGP(PMGP)方法;然后,依据划分后的子图规模,减少了惩罚值局部搜索算法(PBLS)的迭代次数,提出基于速度优化的PBLS(SPBLS)来求解划分后的各个子图的最大团;最后,将PMGP和SPBLS相结合形成PMGP_SMC。采用Stanford大规模数据集运行测试,实验结果表明,PMGP相比并行单层图划分方法(PSGP),求得的最大子图规模能缩小至原来的1/100,平均子图规模能缩小至原来的1/2; PMGP_SMC相比求解最大团问题的PSGP(PSGP_SMC),总体时间缩短至原来的1/100,并且PMGP_SMC求解最大团的精度和基于极大团枚举求解最大团问题的并行多层图划分方法 (PMGP_MCE)一致。PMGP_SMC能够快速精准地求解大规模图例的最大团。 展开更多
关键词 大数据 最大团 SPARK 多层图划分方法 快速局部搜索算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部