期刊文献+
共找到324篇文章
< 1 2 17 >
每页显示 20 50 100
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
1
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
2
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
Service composition based on discrete particle swarm optimization in military organization cloud cooperation 被引量:2
3
作者 An Zhang Haiyang Sun +1 位作者 Zhili Tang Yuan Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期590-601,共12页
This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users... This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA). 展开更多
关键词 service composition cloud cooperation discrete particle swarm optimization(DPSO)
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
4
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
5
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) CLOUD computing system
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
6
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
7
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
8
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
基于MODPSO算法的FPRM电路多约束极性优化方法 被引量:7
9
作者 符强 汪鹏君 +2 位作者 童楠 王铭波 张会红 《电子与信息学报》 EI CSCD 北大核心 2017年第3期717-723,共7页
为求解较大规模FPRM逻辑电路中多约束条件下的极性优化问题,该文提出一种基于多目标离散粒子群优化(Multi-Objective Discrete Particle Swarm Optimization,MODPSO)算法的求解方法。首先针对FPRM电路极性设计需要满足延时短、面积小的... 为求解较大规模FPRM逻辑电路中多约束条件下的极性优化问题,该文提出一种基于多目标离散粒子群优化(Multi-Objective Discrete Particle Swarm Optimization,MODPSO)算法的求解方法。首先针对FPRM电路极性设计需要满足延时短、面积小的多约束要求,构建了多目标决策模型。然后结合极性转换算法和MODPSO算法,对电路进行最优极性搜索,以获取电路延时和面积的Pareto最优解集。最后利用17个MCNC Benchmark电路进行测试,并将MODPSO算法与DPSO算法、NSGA-Ⅱ算法进行实验对比,结果验证了算法的有效性。 展开更多
关键词 FPRM逻辑电路 延时与面积优化 极性搜索 PARETO 多目标离散粒子群算法
在线阅读 下载PDF
基于离散粒子群算法的集群无人机飞行路径规划
10
作者 广鑫 耿增显 《现代电子技术》 北大核心 2025年第4期119-122,共4页
飞行环境可能随时发生变化,如新的障碍物出现、天气条件变化等,导致集群无人机飞行路径规划难度上升。为此,提出一种基于离散粒子群算法的集群无人机飞行路径规划方法。根据人工势场理论与威胁类型绘制Voronoi图,从而确定Voronoi图弧权... 飞行环境可能随时发生变化,如新的障碍物出现、天气条件变化等,导致集群无人机飞行路径规划难度上升。为此,提出一种基于离散粒子群算法的集群无人机飞行路径规划方法。根据人工势场理论与威胁类型绘制Voronoi图,从而确定Voronoi图弧权值。结合Voronoi图弧权值计算结果与无人机飞行航程、威胁、电池效能代价构建适应度函数,通过离散粒子群算法不断进行迭代寻优,得到集群无人机的最佳飞行路径。实验结果表明,所提方法在集群无人机路径规划中具有较高的执行效率和成功率,具有良好的实际应用前景。 展开更多
关键词 离散粒子群算法 集群无人机 路径规划 人工势场 VORONOI图 适应度函数
在线阅读 下载PDF
开放式工业区域碳排放气体监测布点优化
11
作者 郭鹏桃 丁宁 +2 位作者 蒋汶廷 郗砚恒 苏俊 《环境监测管理与技术》 北大核心 2025年第1期62-66,81,共6页
利用高斯大气扩散模型,结合工业区域环境气象信息,对开放式场景下工业区域碳排放进行分析计算,构建开放式区域的监测曲面。基于粒子群算法,在监测曲面上以经济性与覆盖率为目标函数进行求解,获得监测装置最优布点数量及坐标。以成都市... 利用高斯大气扩散模型,结合工业区域环境气象信息,对开放式场景下工业区域碳排放进行分析计算,构建开放式区域的监测曲面。基于粒子群算法,在监测曲面上以经济性与覆盖率为目标函数进行求解,获得监测装置最优布点数量及坐标。以成都市某工业区域为例,通过数学建模及仿真分析验证该方法的适用性和有效性,分别采用通信范围为50 m和100 m的监测装置进行监测,当监测点数量为32时,其最优覆盖率分别超过32%和83%。 展开更多
关键词 工业碳排放 监测布点 高斯模型 粒子群算法 离散空间 概率分布
在线阅读 下载PDF
FSTPSO优化VMD及OMRDE特征在联合收割机装配质量检测中的应用研究
12
作者 徐国夏 张家铭 +3 位作者 马毅臻 轩梦辉 赵思夏 温金羽 《拖拉机与农用运输车》 2025年第1期37-47,共11页
针对联合收割机在装配质量检测问题上缺乏有效的检测方法,提出一种基于模糊自整定粒子群算法(Fuzzy Self-tuning Particle Swarm Optimization,简称FSTPSO)优化变分模态分解(Variational Mode Decomposition,简称VMD)及最小二乘支持向量... 针对联合收割机在装配质量检测问题上缺乏有效的检测方法,提出一种基于模糊自整定粒子群算法(Fuzzy Self-tuning Particle Swarm Optimization,简称FSTPSO)优化变分模态分解(Variational Mode Decomposition,简称VMD)及最小二乘支持向量机(Least Squares Support Vector Machines,简称LSSVM)的故障诊断方法。采用优化多尺度反向离散熵(Optimized Multi-Scale Reverse Discrete Entropy,简称OMRDE)进行特征提取,并与时频域特征进行特征融合。建立FSTPSO-VMD-FSTPSO-LSSVM故障诊断模型,对比分析OMRDE、多尺度离散熵、模糊熵三种熵函数的特征提取效果,对比FSTPSO-VMD-DF、FSTPSO-VMD-DT、FSTPSO-VMD-SVM、FSTPSO-VMD-LSSVM、FSTPSO-VMD-KNN、FSTPSO-VMD-NBM的分类准确率,验证了本文所述故障诊断模型的有效性,试验结果证明本文提出模型对联合收割机装配质量检测的分类准确率可达99%,较现有模型具有更好的准确度与稳定性。 展开更多
关键词 联合收割机装配质量检测 模糊自整定粒子群算法 变分模态分解 优化多尺度反向离散熵 最小二乘支持向量机
在线阅读 下载PDF
玉米秸秆-牛粪混料离散元仿真参数标定与试验 被引量:1
13
作者 马永财 戚艳 +3 位作者 王汉羊 滕达 陈家祺 刘丹 《农业机械学报》 CSCD 北大核心 2024年第12期441-450,504,共11页
为了提高玉米秸秆与牛粪混料在离散元压缩成型仿真过程中所需参数的准确性,本文对玉米秸秆-牛粪混料进行参数标定试验,并采用仿真与物理试验相结合的方式对标定参数的准确性进行验证。通过筛选试验得到对混料离散元有显著影响的参数;以... 为了提高玉米秸秆与牛粪混料在离散元压缩成型仿真过程中所需参数的准确性,本文对玉米秸秆-牛粪混料进行参数标定试验,并采用仿真与物理试验相结合的方式对标定参数的准确性进行验证。通过筛选试验得到对混料离散元有显著影响的参数;以堆积角为评价指标,利用Design-Expert软件对3个显著性影响参数进行最陡爬坡试验设计和Box-Behnken试验设计,并应用粒子群优化算法(PSO)进行参数寻优,得到最优参数组合为:玉米秸秆-牛粪滚动摩擦因数0.128、牛粪-牛粪滚动摩擦因数0.320、牛粪-牛粪JKR表面能0.033 J/m^(2);在该参数组合条件下进行仿真试验,结果表明,仿真堆积角与实际堆积角相对误差为1.27%,单轴压缩仿真试验与物理试验的最大压缩位移相对误差为2.97%。研究结果可为玉米秸秆-牛粪混料压缩成型离散元仿真提供依据。 展开更多
关键词 玉米秸秆-牛粪混料 参数标定 离散元 粒子群优化算法
在线阅读 下载PDF
公路隧道风光水储互补发电系统容量配置研究
14
作者 李金 林志 +3 位作者 于冲冲 尹恒 刘超铭 黄可心 《隧道建设(中英文)》 CSCD 北大核心 2024年第S01期124-130,共7页
为降低公路隧道的电力运营成本,探究可再生能源互补发电系统在公路隧道的应用前景,研究合适的容量配置求解方法。建立利用风、光、水和储能设备的互补发电系统为公路隧道提供电力资源。以特长公路隧道(总长7.1 km)为估算模型,采用改进... 为降低公路隧道的电力运营成本,探究可再生能源互补发电系统在公路隧道的应用前景,研究合适的容量配置求解方法。建立利用风、光、水和储能设备的互补发电系统为公路隧道提供电力资源。以特长公路隧道(总长7.1 km)为估算模型,采用改进后的粒子群优化算法,即离散型自适应粒子群优化算法,以全生命周期的建设成本和设备维护成本最小为目标函数,以缺电负荷率(LPSP)和储能电池的状态为约束,对风力发电设备、光伏发电设备、水力发电设备和储能设备的最优容量配置进行求解。结果表明:1)对比标准粒子群算法,离散型自适应粒子群优化算法的总投入成本更少,寻优能力更强;2)对比该隧道1年的用电成本,前期投入将在5年内回本;3)在风光水储互补发电系统的设备全生命使用周期的20年内,该隧道可节省1 920.39万元电费。 展开更多
关键词 能耗 公路隧道 风光水储互补发电系统 离散型自适应粒子群优化算法 容量配置
在线阅读 下载PDF
基于混合离散粒子群优化的控制模式分配算法 被引量:1
15
作者 曾裕钦 蔡华洋 +3 位作者 周茹平 刘耿耿 黄兴 徐宁 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2836-2849,共14页
连续微流控生物芯片是生物化学实验自动化、微型化的革命性技术.多路复用器的控制模式分配作为连续微流控生物芯片自动化设计的关键环节之一,是难的NP(Non-deterministic Polynomial)优化问题.现有工作采用粒子群优化算法求解控制模式... 连续微流控生物芯片是生物化学实验自动化、微型化的革命性技术.多路复用器的控制模式分配作为连续微流控生物芯片自动化设计的关键环节之一,是难的NP(Non-deterministic Polynomial)优化问题.现有工作采用粒子群优化算法求解控制模式分配问题存在过早陷入局部最优解、收敛速度慢以及算法稳定性差的缺点.为此,本文提出一种连续微流控生物芯片下基于混合离散粒子群优化的控制模式分配算法.首先,为了加快算法收敛速度及避免过早陷入局部最优解,提出了离散的自适应区域搜索策略.其次,通过基于样例的社会学习机制提高了算法的稳定性.然后,采用等距抽值的方式筛选出自适应区域搜索策略中重要参数的最佳组合,以进一步提高分配方案的质量.最终实验结果表明,所提算法在多路复用器中阀门使用数量上平均优化了19.01%,在算法稳定性上提高了29.18%,且在现实的生化应用中有良好的性能表现. 展开更多
关键词 连续微流控生物芯片 控制模式分配 离散粒子群优化 样例学习 自适应区域搜索
在线阅读 下载PDF
改进的可见光通信系统PTS峰均比抑制方法 被引量:1
16
作者 方智敬 陈媛 王俊杰 《系统工程与电子技术》 EI CSCD 北大核心 2024年第7期2509-2514,共6页
针对非对称剪切正交频分复用(asymmetric-clipped orthogonal frequency division multiplexing,ACO-OFDM)可见光通信(visible light communication,VLC)系统中信号的高峰均功率比(peak-to-average power ratio,PAPR)问题,采用部分传输... 针对非对称剪切正交频分复用(asymmetric-clipped orthogonal frequency division multiplexing,ACO-OFDM)可见光通信(visible light communication,VLC)系统中信号的高峰均功率比(peak-to-average power ratio,PAPR)问题,采用部分传输序列(partial transmit sequence,PTS)方法,并结合二进制离散粒子群优化(discrete particle swarm optimization,DPSO)算法,提出一种改进的PTS峰均比抑制方法——DPSO-PTS方法。利用DPSO算法对加权的相位因子进行优化处理,选择最佳的相位因子组合来有效控制PAPR的范围,并对乘加权信息的子块进行求和,从而选择出最小PAPR对应的一组信号进行传输。仿真结果表明,在互补累计分布函数(complementary cumulative distribution function,CCDF)为10-4时,DPSO-PTS方法的系统PAPR降低了约4 dB,且相较于传统PTS方法,系统的复杂度和误码率(bit error rate,BER)性能也得到有效的改善。 展开更多
关键词 可见光通信 非对称剪切正交频分复用 峰均功率比 离散粒子群优化-部分传输序列方法
在线阅读 下载PDF
基于γ随机搜索策略的无人机集群海上任务分配
17
作者 吴秋实 郭杰 +3 位作者 康振亮 张宝超 王浩凝 唐胜景 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第12期3872-3883,共12页
针对无人机(UAV)集群海上作战态势复杂、作战任务多样、作战单元异构的特点,建立了海上无人机集群多目标任务分配优化模型,并针对该模型提出了一种基于γ随机搜索策略的改进离散粒子群算法(γ-DPSO)。将作战态势细节与复杂作战需求等引... 针对无人机(UAV)集群海上作战态势复杂、作战任务多样、作战单元异构的特点,建立了海上无人机集群多目标任务分配优化模型,并针对该模型提出了一种基于γ随机搜索策略的改进离散粒子群算法(γ-DPSO)。将作战态势细节与复杂作战需求等引入无人机集群任务分配问题,建立契合作战场景的无人机集群任务分配作战模型;基于粒子编码矩阵,设计均衡搜索策略、γ随机搜索策略、分阶段自适应参数,提出基于γ随机搜索策略的改进离散粒子群算法,解决离散粒子群算法易陷入局部最优造成未成熟收敛的问题。仿真结果表明:针对所建立的符合海上作战特点的无人机集群多目标任务分配优化模型,所提算法可有效解决无人机集群多目标任务分配问题,所提改进策略提高了算法的收敛速度与算法精度。 展开更多
关键词 无人机 协同任务分配 离散粒子群算法 随机搜索策略 均衡搜索策略
在线阅读 下载PDF
基于动态粒子群优化的X结构Steiner最小树算法
18
作者 王景熠 朱予涵 +1 位作者 周茹平 刘耿耿 《计算机工程》 CAS CSCD 北大核心 2024年第9期226-234,共9页
Steiner最小树(SMT)是总体布线的最佳连接模型,其构造是1个NP-难问题。粒子群优化(PSO)算法在解决NP-难问题中具有良好的表现,而PSO算法中种群的拓扑结构及搜索信息的传递机制对其性能有着很大的影响。1个适用于具体问题的种群拓扑结构... Steiner最小树(SMT)是总体布线的最佳连接模型,其构造是1个NP-难问题。粒子群优化(PSO)算法在解决NP-难问题中具有良好的表现,而PSO算法中种群的拓扑结构及搜索信息的传递机制对其性能有着很大的影响。1个适用于具体问题的种群拓扑结构对算法性能的提升极为显著。因此,利用PSO求解总体布线问题需要根据具体布线问题的特性来选择合适的粒子拓扑结构策略,以提升PSO的性能。提出基于动态PSO的X结构Steiner最小树(XSMT)算法以解决总体布线问题。首先,设计动态子群与信息交换策略,对种群进行子群划分,引入信息交换的概念,让子群在保持独立性的同时与其他子群进行信息交换,增加子群多样性;其次,设计粒子学习与变异策略,通过设置子群中粒子的学习对象使子群趋向于全局最优,并选择每个子群中适应度值最好的粒子进行变异,使粒子更易于跳出局部最优;最后,设计从多群局部学习过渡到单群全局学习策略,使算法在迭代次数到达阈值之后从局部学习过渡到全局学习,使得粒子在较优拓扑结构的基础上内部连接以获得更好的线长优化率。实验结果表明,与现有的2种R结构SMT(RSMT)算法相比,所提算法在优化线长方面分别优化了10.25%、8.24%;与现有的3种XSMT算法相比,该算法在优化线长方面分别优化了2.44%、1.46%、0.48%,验证了算法的有效性。 展开更多
关键词 动态粒子群优化 信息交换 X结构Steiner最小树 超大规模集成电路布线 粒子群优化离散化
在线阅读 下载PDF
微分光谱变换方法对土壤重金属含量反演精度的影响研究
19
作者 白宗璠 韩玲 +1 位作者 姜旭海 武春林 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1449-1456,共8页
随着我国工农业的日益发展,土壤中以镍(Ni)、铁(Fe)、铜(Cu)、铬(Cr)、铅(Pb)等为代表的重金属污染对人类生活产生了严重影响。高光谱遥感技术具有实时、无损、快速等优点,为高效准确地获取土壤重金属含量提供了科学手段。而在利用高光... 随着我国工农业的日益发展,土壤中以镍(Ni)、铁(Fe)、铜(Cu)、铬(Cr)、铅(Pb)等为代表的重金属污染对人类生活产生了严重影响。高光谱遥感技术具有实时、无损、快速等优点,为高效准确地获取土壤重金属含量提供了科学手段。而在利用高光谱数据反演土壤重金属含量时,微分光谱变换方法的选择对遥感反演土壤重金属含量的精度有显著影响。为明确二者关系,基于研究区采集的60个土壤样品,测定其Ni、Fe、Cr、Cu、Pb等含量以及350~2500 nm波段范围的光谱反射率。在相关系数(CC)分析法的基础上通过改进离散粒子群算法(MDBPSO)优选遥感探测土壤重金属含量的特征波段。最终以优选出的特征波段作为自变量利用随机森林(RF)算法构建了Ni、Fe、Cr、Cu、Pb等重金属含量的估测模型。在对原始反射率数据进行高斯平滑的基础上,对比分析了一阶微分(R′)、对数倒数的一阶微分(1/lgR)′、倒数的一阶微分(1/R)′、指数的一阶微分(e^(R))′四种微分光谱变换方法对土壤重金属反演精度的影响。结果表明,在CC分析法的基础上,MDBPSO算法可以有效地降低光谱数据的冗余度,提高模型的运行效率。其中R′、(1/lgR)′、(1/R)′、(e^(R))′中对Ni、Fe、Cr、Cu、Pb敏感的特征波段个数分别至少减少了154、363、135、744和889个。(1/lgR)′、R′、R′、(1/R)′、R′光谱变换方法分别应用到Ni、Fe、Cr、Cu、Pb特征波段的组合运算中,得到的估测模型的精度优于其他微分变换方法;模型检验集的决定系数分别为0.913、0.906、0.872、0.912、0.876,均方根误差分别为0.743、0.095、2.588、1.541、1.453。本研究为利用遥感数据反演土壤重金属含量微分光谱变换方法的选择提供了科学的参考,为进一步实现土壤重金属含量的大面积高精度遥感监测提供新的思路。 展开更多
关键词 遥感 高光谱 土壤 光谱变换方法 重金属 改进离散粒子群 随机森林
在线阅读 下载PDF
多电压等级交流电网容载比计算方法
20
作者 任鹏 牛为华 +1 位作者 李鹏 张洋瑞 《电源学报》 CSCD 北大核心 2024年第6期170-178,共9页
现有的容载比计算方法未考虑不同电压等级对交流电网的影响,导致交流电网可靠性与经济性无法同时达到最优,因此在考虑电压等级的基础上,提出多电压等级交流电网容载比计算方法。分别计算高压与低压模式下交流电网的供电能力,根据供电能... 现有的容载比计算方法未考虑不同电压等级对交流电网的影响,导致交流电网可靠性与经济性无法同时达到最优,因此在考虑电压等级的基础上,提出多电压等级交流电网容载比计算方法。分别计算高压与低压模式下交流电网的供电能力,根据供电能力利用离散粒子群优化算法计算不同电压等级的容载比粒子数,得到多电压等级交流电网的最优容载比计算结果,从而实现多电压等级交流电网容量配置优化。实验结果表明,该方法能够使变压器容载比达到最优,优化后的交流电网供电可靠性、经济性及满意度均较高。 展开更多
关键词 多电压等级 交流电网 容载比 离散粒子群优化算法
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部