It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimens...In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.展开更多
Let G be a locally compact Vilenkin gro up . We will establish the boundedness in Morrey spaces L p,λ (G) for a la rge class of sublinear operators and linear commutators.
In this paper,we study a boundedness property of the Adams type for multilinear fractional integral operators with the multilinear L^(r′,α)-Hörmander condition and their commutators with vector valued BMO funct...In this paper,we study a boundedness property of the Adams type for multilinear fractional integral operators with the multilinear L^(r′,α)-Hörmander condition and their commutators with vector valued BMO functions on a Morrey space and a predual Morrey space.Moreover,we give an endpoint estimate for multilinear fractional integral operators.As an application,we obtain the boundedness of multilinear Fourier multipliers with limited Sobolev regularity on a Morrey space.展开更多
We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey sp...We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces.展开更多
In this paper, we will study the boundedness of the singular integral operator with variable Calder′on-Zygmund kernel on the weighted Morrey spaces Lp,κ(ω) for q′≤ p < ∞and 0 < κ < 1. Furthermore, the ...In this paper, we will study the boundedness of the singular integral operator with variable Calder′on-Zygmund kernel on the weighted Morrey spaces Lp,κ(ω) for q′≤ p < ∞and 0 < κ < 1. Furthermore, the boundedness for the commutator with BMO functions is also obtained.展开更多
In this paper,we provide the boundedness property of the Riesz transforms associated to the Schrodinger operator■=-Δ+V in a new weighted Morrey space which is the generalized version of many previous Morrey type spa...In this paper,we provide the boundedness property of the Riesz transforms associated to the Schrodinger operator■=-Δ+V in a new weighted Morrey space which is the generalized version of many previous Morrey type spaces.The additional potential V considered in this paper is a non-negative function satisfying the suitable reverse Holder's inequality.Our results are new and general in many cases of problems.As an application of the boundedness property of these singular integral operators,we obtain some regularity results of solutions to Schrodinger equations in the new Morrey space.展开更多
The generalized Morrey spaces are introduced under the hypothesis that R^n is endowed with the general parabolic metric , and the boundedness properties are established in generalized Morrey spaces for a class of sing...The generalized Morrey spaces are introduced under the hypothesis that R^n is endowed with the general parabolic metric , and the boundedness properties are established in generalized Morrey spaces for a class of singular integral operators, which include Calderon-Zygmund singular integrals and.their commutators with BMO.展开更多
In this paper,the author study the boundedness of some multilinear operators on generalized Morrey spaces Lp,ω.They are the generalization of the corresponding results about commutators in [6].Even then,from these re...In this paper,the author study the boundedness of some multilinear operators on generalized Morrey spaces Lp,ω.They are the generalization of the corresponding results about commutators in [6].Even then,from these results,we can concluded the cases of high order commutators.展开更多
This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽...This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.展开更多
In this paper, we obtain the boundedness of multilinear Calderón-Zygmund operators with kernels of Dini type and commutators with variable exponent λ-central BMO functions in variable exponent central Morrey spa...In this paper, we obtain the boundedness of multilinear Calderón-Zygmund operators with kernels of Dini type and commutators with variable exponent λ-central BMO functions in variable exponent central Morrey spaces.展开更多
This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from...This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from weighted Lebesgue spaces LP(w) to weighted Morrey spaces Mpq(ω) for 1 〈 q 〈 p 〈 ∞. As a corollary, if M is (weak) bounded on Mpq(ω), then ω∈Ap. The Ap condition also characterizes the boundedness of the Riesz transform Rj and convolution operators Tε on weighted Morrey spaces. Finally, we show that ω∈Ap if and only if ω∈BMOp' (ω) for 1 ≤ p 〈 ∞ and 1/p + 1/p' = 1.展开更多
In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H...In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].展开更多
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
基金partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0018)partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0019)+1 种基金by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1partially supported by the Scientific and Technological Research Council of Turkey(TUBITAK Project No:110T695)
文摘In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.
文摘Let G be a locally compact Vilenkin gro up . We will establish the boundedness in Morrey spaces L p,λ (G) for a la rge class of sublinear operators and linear commutators.
基金Supported by the Natural Science Foundation of Tongling College(2007tlxykj006) Supported by the Natural Science Foundation of Anhui Province(KJ2010B460)
文摘In this paper,we have obtained the boundedness of maximal Bochner-Riesz operator on generalized Morrey space.Also,it is right for its commutator.
基金supported by National Natural Science Foundation of China(11871452,12071473)the Beijing Information Science and Technology University Foundation(2025031)。
文摘In this paper,we study a boundedness property of the Adams type for multilinear fractional integral operators with the multilinear L^(r′,α)-Hörmander condition and their commutators with vector valued BMO functions on a Morrey space and a predual Morrey space.Moreover,we give an endpoint estimate for multilinear fractional integral operators.As an application,we obtain the boundedness of multilinear Fourier multipliers with limited Sobolev regularity on a Morrey space.
文摘We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces.
基金Supported by the NSFC(11001001)Supported by the Natural Science Foundation from the Education Department of Anhui Province(KJ2013A235,KJ2013Z279)
文摘In this paper, we will study the boundedness of the singular integral operator with variable Calder′on-Zygmund kernel on the weighted Morrey spaces Lp,κ(ω) for q′≤ p < ∞and 0 < κ < 1. Furthermore, the boundedness for the commutator with BMO functions is also obtained.
文摘In this paper,we provide the boundedness property of the Riesz transforms associated to the Schrodinger operator■=-Δ+V in a new weighted Morrey space which is the generalized version of many previous Morrey type spaces.The additional potential V considered in this paper is a non-negative function satisfying the suitable reverse Holder's inequality.Our results are new and general in many cases of problems.As an application of the boundedness property of these singular integral operators,we obtain some regularity results of solutions to Schrodinger equations in the new Morrey space.
基金Supported by Henan Youth Backone Teacher's of Colleges and Universities Founded Projects(2004189)
文摘The generalized Morrey spaces are introduced under the hypothesis that R^n is endowed with the general parabolic metric , and the boundedness properties are established in generalized Morrey spaces for a class of singular integral operators, which include Calderon-Zygmund singular integrals and.their commutators with BMO.
基金Supported by Natural Science Foundation of China(1072600810701008)
文摘In this paper,the author study the boundedness of some multilinear operators on generalized Morrey spaces Lp,ω.They are the generalization of the corresponding results about commutators in [6].Even then,from these results,we can concluded the cases of high order commutators.
基金supported by the National Natural Science Foundation of China(12271296,12271195).
文摘This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.
文摘In this paper, we obtain the boundedness of multilinear Calderón-Zygmund operators with kernels of Dini type and commutators with variable exponent λ-central BMO functions in variable exponent central Morrey spaces.
基金supported by National Natural Science Foundation of China(Grant No.11661075)
文摘This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from weighted Lebesgue spaces LP(w) to weighted Morrey spaces Mpq(ω) for 1 〈 q 〈 p 〈 ∞. As a corollary, if M is (weak) bounded on Mpq(ω), then ω∈Ap. The Ap condition also characterizes the boundedness of the Riesz transform Rj and convolution operators Tε on weighted Morrey spaces. Finally, we show that ω∈Ap if and only if ω∈BMOp' (ω) for 1 ≤ p 〈 ∞ and 1/p + 1/p' = 1.
基金Natural Science Foundation of China(11771166)Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46.
文摘In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].