期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Predicting configuration performance of modular product family using principal component analysis and support vector machine 被引量:1
1
作者 张萌 李国喜 +1 位作者 龚京忠 吴宝中 《Journal of Central South University》 SCIE EI CAS 2014年第7期2701-2711,共11页
A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a n... A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators. 展开更多
关键词 design configuration performance prediction modularITY principal component analysis support vector machine
在线阅读 下载PDF
基于二代Curvelet变换与MPCA的可见光与红外图像融合 被引量:1
2
作者 周爱平 梁久祯 《计算机应用》 CSCD 北大核心 2010年第11期3011-3014,共4页
针对同一场景红外图像与可见光图像的融合问题,提出了一种基于二代Curvelet变换与模块化主成分分析(MPCA)的图像融合新方法。首先对原始图像分别进行快速离散Curvelet变换,得到不同尺度和方向下的粗细尺度系数;根据红外图像与可见光图... 针对同一场景红外图像与可见光图像的融合问题,提出了一种基于二代Curvelet变换与模块化主成分分析(MPCA)的图像融合新方法。首先对原始图像分别进行快速离散Curvelet变换,得到不同尺度和方向下的粗细尺度系数;根据红外图像与可见光图像的不同物理特性以及人类视觉系统特性,对粗尺度系数的选择,采用基于模块化主成分分析(MPCA)的融合规则,确定融合权值,而对不同尺度与方向下的细尺度系数的选择,采用基于局部区域能量的融合规则;最后经Curvelet逆变换得到融合结果。实验结果表明,该方法能够更加有效、准确地提取图像中的特征,在主观视觉效果与客观评价指标上均取得了较好的融合效果,是一种可行有效的图像融合算法。 展开更多
关键词 图像融合 CURVELET变换 模块化主成分分析 可见光图像 红外图像
在线阅读 下载PDF
滑动模型MPCA在非线性系统故障监测与诊断中的应用
3
作者 陈勇 梁军 《工程设计学报》 CSCD 2003年第3期131-135,共5页
多向主元分析(MPCA)是一种应用于间歇生产过程故障监测与诊断的较为有效的方法,但由于其线性化建模特征以及本身的一些局限性,它在高度复杂的非线性系统的应用中往往难以保证故障诊断的准确性和实时性.结合MPCA方法的优缺点,提出一种滑... 多向主元分析(MPCA)是一种应用于间歇生产过程故障监测与诊断的较为有效的方法,但由于其线性化建模特征以及本身的一些局限性,它在高度复杂的非线性系统的应用中往往难以保证故障诊断的准确性和实时性.结合MPCA方法的优缺点,提出一种滑动模型的MPCA方法,讨论了该方法的建模及其在故障监测与诊断中的应用,并采用对称式DTW算法解决了多元轨迹同步化的问题.在实际生产设备上的试验表明,该方法具有良好的精确性和实时性. 展开更多
关键词 多向主元分析 间歇生产 滑动模型 故障诊断 动态时间错位
在线阅读 下载PDF
基于张量表示的多时相极化SAR农作物分类方法
4
作者 许璐 张红 +3 位作者 王超 吴樊 张波 汤益先 《中国科学院大学学报(中英文)》 北大核心 2025年第5期686-699,共14页
为充分利用多时相极化合成孔径雷达(SAR)数据的时间相干性和散射特征,提出一个多时相极化SAR分类方法,该方法基于完整的极化协方差矩阵,能够在张量空间保持协方差矩阵的复数矩阵结构,实现时间维度的独立表示,可同时适用于全极化和简缩极... 为充分利用多时相极化合成孔径雷达(SAR)数据的时间相干性和散射特征,提出一个多时相极化SAR分类方法,该方法基于完整的极化协方差矩阵,能够在张量空间保持协方差矩阵的复数矩阵结构,实现时间维度的独立表示,可同时适用于全极化和简缩极化SAR。该方法采用目标级的分类策略,首先,通过简单线性迭代聚类方法实现多时相极化SAR的超像素联合分割;随后,将目标的极化协方差矩阵表示为张量的形式,利用张量域的多线性主成分分析方法,实现多时相极化协方差矩阵的特征降维;最后,用决策树方法实现农作物分类。获取4景RADARSAT-2 Fine Quad模式全极化SAR图像,对天津市武清区农作物种植区开展作物分类实验,相较于其他文献提出的方法,本文方法取得了最高的总体分类精度。进一步,将该方法推广至π/4模式和CTLR模式的简缩极化SAR,并将其农作物分类精度与全极化SAR进行对比,以研究不同极化SAR数据对作物的识别能力。实验结果表明,简缩极化SAR可以取得与全极化SAR相当的总体分类精度,但全极化SAR在水稻、荷花等小样本地物上表现更优。 展开更多
关键词 合成孔径雷达(SAR) 全极化(FP) 简缩极化(CP) 农作物分类 张量 多线性主成分分析(mpca)
在线阅读 下载PDF
基于自组织神经网络与核密度估计的非线性MPCA在线故障监测
5
作者 肖应旺 《小型微型计算机系统》 CSCD 北大核心 2011年第5期989-993,共5页
针对多向主元分析(MPCA)不能提取复杂的非线性系统变量间的非线性特性以及T2统计量置信限的确定是以主元得分呈正态分布为假设前提的情况,提出了一种基于自组织神经网络与核密度估计的非线性MPCA在线故障监测方法.该方法用自组织神经网... 针对多向主元分析(MPCA)不能提取复杂的非线性系统变量间的非线性特性以及T2统计量置信限的确定是以主元得分呈正态分布为假设前提的情况,提出了一种基于自组织神经网络与核密度估计的非线性MPCA在线故障监测方法.该方法用自组织神经网络去提取变量间的非线性特征信息;用核概率密度函数去估计非线性主元的置信限.将该方法应用到β-甘露聚糖酶补料分批发酵过程的在线故障监测中,应用效果表明用非线性主元比用同样数目的线性主元能够获取更多的变量信息,并且用核密度估计置信限的方法比用参数估计的方法能更准确地对故障进行监测. 展开更多
关键词 多向主元分析 自组织神经网络 核密度估计 非线性主元 在线故障监测
在线阅读 下载PDF
CUIMWMPCA方法及其在批过程故障监测中的应用
6
作者 肖应旺 《计算机应用研究》 CSCD 北大核心 2009年第1期218-220,共3页
针对传统的多向主元分析(multiway principal component analysis,MPCA)批过程监测的缺陷,提出了一种连续更新的改进移动窗多向主元分析(consecutively updated improved moving window MPCA,CUIMWMPCA)方法。该方法采用连续更新的多模... 针对传统的多向主元分析(multiway principal component analysis,MPCA)批过程监测的缺陷,提出了一种连续更新的改进移动窗多向主元分析(consecutively updated improved moving window MPCA,CUIMWMPCA)方法。该方法采用连续更新的多模型非线性结构代替传统的MPCA固定的单模型线性化结构,一旦通过改进的移动窗多向主元分析(improved moving windowMPCA,IMWMPCA)判断出某一新批次过程正常,则模型参考数据库就随之更新。在实时监测新的批过程时,只需利用已收集到的数据信息,并且在线连续地更新模型参考数据库,提高了批过程性能监测的准确性,克服了MPCA不能处理非线性过程和实时性的问题。通过采用CUIMWMPCA与移动窗多向主元分析(moving windowMPCA,MWMPCA)方法对青霉素分批补料发酵过程的实时监测,结果表明CUIMWMPCA比MWMPCA更适合于对缓慢变化的批过程进行监测,具有更可靠的监测性能。 展开更多
关键词 批过程 多向主元分析 改进移动窗 模型更新 青霉素发酵 在线监测
在线阅读 下载PDF
基于多约束DTW的MPCA间歇过程监测方法 被引量:1
7
作者 高学金 黄梦丹 +1 位作者 王普 齐咏生 《北京工业大学学报》 CAS CSCD 北大核心 2018年第3期393-400,共8页
针对间歇过程固有的批次不等长问题,也为了克服传统解决批次间同步问题方法存在的数据浪费、扭曲原始过程变量的自相关及交叉相关关系的严重缺陷,提出基于多约束的动态时间规整(dynamic time warping,DTW)方法,按照轨迹中点与点的模式... 针对间歇过程固有的批次不等长问题,也为了克服传统解决批次间同步问题方法存在的数据浪费、扭曲原始过程变量的自相关及交叉相关关系的严重缺陷,提出基于多约束的动态时间规整(dynamic time warping,DTW)方法,按照轨迹中点与点的模式进行动态匹配解决的同步问题.同时,引入了全局路径限制和失真度阈值限制对DTW方法进行改进,解决了传统DTW方法长时间运行造成的故障监测严重滞后的问题,同时克服了其处理过程的复杂性与其离线性导致其实际应用的困难.用多向主元分析(multiway principal component analysis,MPCA)方法将多约束DTW处理过的数据进行建模.将该方法应用到青霉素发酵过程仿真实验中,结果表明:该方法能够快速准确地对不等长批次进行规整,与传统方法相比,故障的误报率、漏报率明显降低. 展开更多
关键词 间歇过程 多约束DTW 全局路径限制 失真度阈值限制 多向主元分析
在线阅读 下载PDF
改进的主成分分析法自动发现土地覆盖变化 被引量:9
8
作者 贺奋琴 何政伟 +2 位作者 胡振琪 尹建忠 房世波 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期92-96,共5页
为了实现快速、自动化发现土地覆盖变化这一目标,在分析传统主成分差异法、差异主成分法、多波段主成分法三种不同处理过程的基础上,结合主成分变换原理提出了一种改进的主成分分析法(modified principal component analysis,MPCA)。操... 为了实现快速、自动化发现土地覆盖变化这一目标,在分析传统主成分差异法、差异主成分法、多波段主成分法三种不同处理过程的基础上,结合主成分变换原理提出了一种改进的主成分分析法(modified principal component analysis,MPCA)。操作中先将d1时相多光谱影像作主成分分析,得PC1d1,PC2d1,…,PC6d1;d2时相高分辨率全色波段PAN与PC1d1进行直方图匹配后,采用了经反复试验效果较好的3×3模板进行边缘滤波增强;然后取代PC1d1与PC2d1,PC3d1,…,PC6d1进行主成分逆变换,作者在ENVI4.0和IDL6.0工具包支持下实现了这一融合算法。以北京海淀区为例进行的试验研究表明,MPCA法不仅能够快速发现变化信息,而且增强了影像纹理,弥补了传统主成分分析法的缺陷。此外,变化信息提取精度较高,其Kappa系数比传统主成分差异法、差异主成分法、多波段主成分法依次提高了0.063,0.118,0.029,是一种比较实用的变化信息发现方法,值得推广应用。 展开更多
关键词 主成分分析(PCA) mpca 土地覆盖 变化信息 自动发现
在线阅读 下载PDF
分块PCA鉴别特征抽取能力的分析研究 被引量:17
9
作者 陈伏兵 谢永华 +1 位作者 严云洋 杨静宇 《计算机科学》 CSCD 北大核心 2006年第3期155-159,共5页
基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是... 基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在 Yale 人脸数据库上测试了该方法的鉴别能力。实验的结果表明,分块 PCA 在识别性能上优于通常的 PCA 方法,也优于基于 Fisher 鉴别准则的鉴别分析方法:Fisherfaces 方法、F-S 方法、组合鉴别方法,识别率可以达到100%。 展开更多
关键词 线性鉴别分析 主成分分析 特征抽取 分块主成分分析 人脸识别
在线阅读 下载PDF
改进MKPCA方法及其在发酵过程监控中的应用 被引量:13
10
作者 齐咏生 王普 +1 位作者 高学金 公彦杰 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第12期2530-2538,共9页
针对间歇发酵过程缓慢时变和非线性等特点,提出一种基于滑动窗技术的多向核主元分析(MWMKPCA)方法。该方法结合了核主元分析(KPCA)和滑动窗口技术的优点,其中KPCA能有效解决过程数据的非线性问题,保证数据信息抽取的完整性;而滑动窗口... 针对间歇发酵过程缓慢时变和非线性等特点,提出一种基于滑动窗技术的多向核主元分析(MWMKPCA)方法。该方法结合了核主元分析(KPCA)和滑动窗口技术的优点,其中KPCA能有效解决过程数据的非线性问题,保证数据信息抽取的完整性;而滑动窗口技术能有效避免MKPCA在线应用时预报未来测量值所引入的误差,提高监控性能。对于已判断正常的新批次过程数据,将其加入模型参考数据库进行更新,从而提高间歇过程性能检测的准确性。将该方法应用到工业青霉素发酵过程的监控中,并与MPCA、MKPCA方法的监测性能进行了比较。结果表明:该方法能有效提取过程变量间的非线性关系,降低运行过程的误报率,对缓慢时变的间歇过程具有更可靠的检测性能。 展开更多
关键词 故障监测 多向核主元分析 多向主元分析 模型更新 发酵过程
在线阅读 下载PDF
基于线性插值的张量步态识别算法 被引量:11
11
作者 贲晛烨 安实 +1 位作者 王健 王科俊 《计算机应用研究》 CSCD 北大核心 2012年第1期355-358,共4页
提出一种新的基于线性插值的张量步态识别算法。为了能将测试步态序列与注册的相匹配,必须使测试序列的维数与注册的一致,首先将一个周期内的步态帧经相邻帧线性插值归一到一定数目,那么单个的步态样本表现成张量的形式。张量分析采用... 提出一种新的基于线性插值的张量步态识别算法。为了能将测试步态序列与注册的相匹配,必须使测试序列的维数与注册的一致,首先将一个周期内的步态帧经相邻帧线性插值归一到一定数目,那么单个的步态样本表现成张量的形式。张量分析采用多重线性主成分分析算法,在CASIA(B)步态数据库上实验,确定单个步态张量选择一个周期比半个周期更有效。该方法得到了令人鼓舞的识别效果。 展开更多
关键词 步态识别 线性插值 张量表达 多重线性主成分分析
在线阅读 下载PDF
基于分块PCA的人脸识别方法 被引量:10
12
作者 陈伏兵 高秀梅 +1 位作者 张生亮 杨静宇 《小型微型计算机系统》 CSCD 北大核心 2006年第10期1943-1947,共5页
本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisher-faces”方法,... 本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisher-faces”方法,实现模式的分类.其特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类.在ORL和NUST603两个人脸数据库上对M2PCA+FDA方法进行了测试,实验的结果表明,本文提出的方法在识别性能上优于“Fisher-faces”方法和PCA方法. 展开更多
关键词 线性鉴别分析 主成分分析 特征抽取 分块PCA 人脸识别
在线阅读 下载PDF
人脸识别中PCA方法的推广 被引量:9
13
作者 陈伏兵 陈秀宏 +1 位作者 王文胜 杨静宇 《计算机工程与应用》 CSCD 北大核心 2005年第34期34-38,共5页
主成分分析(PrincipalComponentAnalysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,该文提出了分块PCA的人脸识别方法。分块PCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵... 主成分分析(PrincipalComponentAnalysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,该文提出了分块PCA的人脸识别方法。分块PCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵利用PCA进行鉴别分析。其特点是能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出。与PCA方法相比,由于使用子图像矩阵,分块PCA可以避免使用奇异值分解理论,过程简便。此外,PCA是分块PCA的特殊情况。在Yale和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上明显优于经典的PCA方法,识别率可以分别提高6.7和4个百分点。 展开更多
关键词 主成分分析 特征抽取 分块PCA 特征矩阵 人脸识别
在线阅读 下载PDF
二维主成分分析方法的推广及其在人脸识别中的应用 被引量:20
14
作者 陈伏兵 陈秀宏 +1 位作者 高秀梅 杨静宇 《计算机应用》 CSCD 北大核心 2005年第8期1767-1770,共4页
提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方... 提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方法相比,使用低维的鉴别特征矩阵,而达到较高(至少是不低)的正确识别率。此外,2DPCA是分块2DPCA的特例。在ORL和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上优于2DPCA方法。 展开更多
关键词 线性鉴别分析 特征抽取 分块二维主成分分析 特征矩阵 人脸识别
在线阅读 下载PDF
基于多线性独立成分分析的掌纹识别 被引量:5
15
作者 郭金玉 谷丽华 +1 位作者 李元 曾静 《计算机工程》 CAS CSCD 北大核心 2011年第12期13-15,18,共4页
为快速有效地在掌纹识别中学习多种因素的高阶统计独立成分,利用多线性独立成分分析方法对掌纹张量进行降维,得到低维的模式矩阵,将掌纹图像向模式矩阵上投影以提取核心张量,通过计算核心张量间的余弦距离实现掌纹匹配。基于PolyU掌纹... 为快速有效地在掌纹识别中学习多种因素的高阶统计独立成分,利用多线性独立成分分析方法对掌纹张量进行降维,得到低维的模式矩阵,将掌纹图像向模式矩阵上投影以提取核心张量,通过计算核心张量间的余弦距离实现掌纹匹配。基于PolyU掌纹图像库的实验结果表明,与主成分分析(PCA)、二维PCA、独立成分分析和多线性PCA相比,该方法的识别率最高,且满足系统实时性要求。 展开更多
关键词 掌纹识别 主成分分析 二维主成分分析 多线性主成分分析 独立成分分析 多线性独立成分分析
在线阅读 下载PDF
分块PCA及其在人脸识别中的应用 被引量:26
16
作者 陈伏兵 杨静宇 《计算机工程与设计》 CSCD 北大核心 2007年第8期1889-1892,1913,共5页
主成分分析(principal component analysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,提出了分块PCA的人脸识别方法。分块PCA方法先对图像进行分块,对分块得到的子图像利用PCA进... 主成分分析(principal component analysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,提出了分块PCA的人脸识别方法。分块PCA方法先对图像进行分块,对分块得到的子图像利用PCA进行鉴别分析。其特点是能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出。与PCA方法相比,由于使用子图像矩阵,分块PCA可以避免使用奇异值分解理论,过程简便。此外,PCA是分块PCA的特例。在Yale和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上明显优于经典的PCA方法,识别率可以分别提高6.7和4.4个百分点。 展开更多
关键词 主成分分析 特征抽取 分块PCA 特征矩阵 人脸识别
在线阅读 下载PDF
气相离子迁移谱对山茶油掺假的检测 被引量:37
17
作者 陈通 陈鑫郁 +2 位作者 谷航 陆道礼 陈斌 《食品科学》 EI CAS CSCD 北大核心 2019年第8期275-279,共5页
以掺假山茶油样为气相离子迁移谱(gas chromatography-ion mobility spectrometry,GC-IMS)检测对象,利用多维主成分分析(multi-way principal component analysis,MPCA)法和偏最小二乘(partial least squares,PLS)回归分析处理二维谱图... 以掺假山茶油样为气相离子迁移谱(gas chromatography-ion mobility spectrometry,GC-IMS)检测对象,利用多维主成分分析(multi-way principal component analysis,MPCA)法和偏最小二乘(partial least squares,PLS)回归分析处理二维谱图数据,探索并建立一种山茶油纯度检测方法。对配制的不同比例3种食用植物油的掺假油样进行GC-IMS检测,采用MPCA压缩并提取矩阵中的得分矩阵进行主成分分析,将提取的得分矩阵进行PLS分析,建立掺假量的定量预测模型。结果表明,MPCA处理后的主成分图可以明显区分山茶油样和掺入不同种类食用油的掺假山茶油样,且不同掺入比例组有其明显的归属区域;采用PLS对MPCA的得分矩阵进行回归分析,可实现对山茶油掺假比例的准确定量测定。该方法具有快速、准确、无损的特点,可应用推广到其他联用仪器的数据分析处理中,在食用油品质控制与评价方法中具有很大的应用前景。 展开更多
关键词 山茶油 纯度 气相离子迁移谱(GC-IMS) 多维主成分分析(mpca) 偏最小二乘(PLS)
在线阅读 下载PDF
基于统计特征的不等长间歇过程故障诊断研究 被引量:9
18
作者 郭金玉 赵璐璐 李元 《计算机应用研究》 CSCD 北大核心 2014年第1期128-130,共3页
为了提高不等长间歇过程故障诊断的性能,同时降低算法的复杂度,提出了一种基于统计特征的不等长间歇过程故障诊断算法。首先计算每个不等长批次的均值、方差、偏度、峭度和任意两个变量间的欧氏距离,并将这些统计特征组合成一个等长的... 为了提高不等长间歇过程故障诊断的性能,同时降低算法的复杂度,提出了一种基于统计特征的不等长间歇过程故障诊断算法。首先计算每个不等长批次的均值、方差、偏度、峭度和任意两个变量间的欧氏距离,并将这些统计特征组合成一个等长的特征向量;然后运用主元分析(PCA)进行过程监视。半导体工业实例的仿真结果表明,与传统的多向主元分析(MPCA)方法相比,基于统计特征的不等长间歇过程故障诊断算法的故障诊断率提高15%,故障检测时间减少了0.002 s,因此该算法具有很好的故障诊断性能。 展开更多
关键词 故障诊断 不等长间歇过程 统计特征 多向主元分析
在线阅读 下载PDF
一种改进的模块PCA人脸识别新方法 被引量:11
19
作者 张岩 武玉强 《计算机工程与应用》 CSCD 北大核心 2011年第26期216-218,共3页
提出了一种改进的模块PCA方法,即基于独立特征抽取的模块PCA方法。算法先对图像进行分块,然后对每一子块独立地进行PCA处理,求出测试样本子块与训练样本对应子块间的距离;最后将这些距离相加得到测试样本与训练样本的距离,用最近距离分... 提出了一种改进的模块PCA方法,即基于独立特征抽取的模块PCA方法。算法先对图像进行分块,然后对每一子块独立地进行PCA处理,求出测试样本子块与训练样本对应子块间的距离;最后将这些距离相加得到测试样本与训练样本的距离,用最近距离分类器分类。在ORL人脸库和Yale人脸库上的实验结果表明,提出的方法在识别性能上明显优于普通模块PCA方法。 展开更多
关键词 主成分分析 模块主成分分析 特征抽取 人脸识别
在线阅读 下载PDF
一种基于局部排序PCA的线性鉴别算法 被引量:5
20
作者 庞成 郭志波 董健 《计算机科学》 CSCD 北大核心 2015年第8期56-59,共4页
主分量分析(Principal Component Analysis,PCA)是模式识别领域中一种重要的特征抽取方法,该方法通过K-L展开式来抽取样本的主要特征。基于此,提出一种拓展的PCA人脸识别方法,即分块排序PCA人脸识别方法(MSPCA)。分块排序PCA方法先对图... 主分量分析(Principal Component Analysis,PCA)是模式识别领域中一种重要的特征抽取方法,该方法通过K-L展开式来抽取样本的主要特征。基于此,提出一种拓展的PCA人脸识别方法,即分块排序PCA人脸识别方法(MSPCA)。分块排序PCA方法先对图像矩阵进行分块,对所有分块得到的子图像矩阵利用PCA方法求出矩阵的所有特征值所对应的特征向量并加以标识;然后找出这些所有的特征值中k个最大的特征值所对应的特征向量,用这些特征向量分别去抽取所属的子图像的特征;最后,在MSPCA的基础上,将抽取子图像所得到的特征矩阵合并,把这个合并后的特征矩阵作为新的样本进行PCA+LDA。与PCA和PCA+LDA方法相比,分块排序PCA由于使用子图像矩阵,可以避免使用奇异值分解理论,从而更加简便。在ORL人脸库上的实验结果表明,所提出的方法在识别性能上明显优于经典的PCA和PCA+LDA方法。 展开更多
关键词 王成分分析 特征抽取 分块PCA 线性鉴别分析
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部