期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A general evaluation system for optimal selection performance of radar clutter model 被引量:2
1
作者 YANG Wei ZHANG Liang +2 位作者 YANG Liru ZHANG Wenpeng SHEN Qinmu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1520-1525,共6页
The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathemati... The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection. 展开更多
关键词 radar clutter clutter characterization model model selection performance evaluation.
在线阅读 下载PDF
Genomic Selection for Frogeye Leaf Spot Resistance in Soybean
2
作者 Yao Lanning Chen Yizhi +4 位作者 Li Haochen Zhang Yue Xia Mingyu Ning Shicheng Ning Hailong 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期11-19,共9页
Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of... Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of soybean, least absolute shrinkage and selection operator(LASSO) regression and stepwise regression were combined, and a genomic selection model was established for 40 002 SNP markers covering soybean genome and relative lesion area of soybean FLS. As a result, 68 molecular markers controlling soybean FLS were detected accurately, and the phenotypic contribution rate of these markers reached 82.45%. In this study, a model was established, which could be used directly to evaluate the resistance of soybean FLS and to select excellent offspring. This research method could also provide ideas and methods for other plants to breeding in disease resistance. 展开更多
关键词 LASSO regression stepwise regression genomic selection model SOYBEAN frogeye leaf spot(FLS)disease
在线阅读 下载PDF
Adaptive spectral affinity propagation clustering 被引量:2
3
作者 TANG Lin SUN Leilei +1 位作者 GUO Chonghui ZHANG Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期647-664,共18页
Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP ... Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms. 展开更多
关键词 affinity propagation(AP) Laplacian eigenmap(LE) arbitrary-shaped cluster model selection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部