Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory...Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory and method is proposed to systematically evaluate the risk of water inrush in karst tunnels.Its innovation mainly includes that the value of evaluation index is an interval rather than a certain value;the single-index attribute evaluation model is improved non-linearly based on the idea of normal distribution;the synthetic attribute interval analysis method based on improved intuitionistic fuzzy theory is proposed.The TFN-AHP method is proposed to analyze the weight of evaluation index.By analyzing geological factors and engineering factors in tunnel zone,a multi-grade hierarchical index system for tunnel water inrush risk assessment is established.The proposed method is applied to ventilation incline of Xiakou tunnel,and its rationality and practicability is verified by comparison with field situation and evaluation results of other methods.In addition,the results evaluated by this method,which considers that water inrush is a complex non-linear system and the geological conditions have spatial variability,are more accurate and reliable.And it has good applicability in solving the problem of certain and uncertain problem.展开更多
Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emp...Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.展开更多
基金Project(51722904)supported by the National Science Fund for Excellent Young Scholars,ChinaProject(51679131)supported by the National Natural Science Foundation of China+2 种基金Project(2019JZZY010601)supported by the Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project),ChinaProject(KJ1712304)supported by the Science and Technology Research Program of Chongqing Municipal Education Commission,ChinaProject(2016XJQN13)supported by the Yangtze Normal University Research Project,China
文摘Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory and method is proposed to systematically evaluate the risk of water inrush in karst tunnels.Its innovation mainly includes that the value of evaluation index is an interval rather than a certain value;the single-index attribute evaluation model is improved non-linearly based on the idea of normal distribution;the synthetic attribute interval analysis method based on improved intuitionistic fuzzy theory is proposed.The TFN-AHP method is proposed to analyze the weight of evaluation index.By analyzing geological factors and engineering factors in tunnel zone,a multi-grade hierarchical index system for tunnel water inrush risk assessment is established.The proposed method is applied to ventilation incline of Xiakou tunnel,and its rationality and practicability is verified by comparison with field situation and evaluation results of other methods.In addition,the results evaluated by this method,which considers that water inrush is a complex non-linear system and the geological conditions have spatial variability,are more accurate and reliable.And it has good applicability in solving the problem of certain and uncertain problem.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.61612385in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016.
文摘Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.