期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modelling method with missing values based on clustering and support vector regression 被引量:2
1
作者 Ling Wang Dongmei Fu Qing Li Zhichun Mu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期142-147,共6页
Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real proc... Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm. 展开更多
关键词 MODELING missing value K-means with soft constraints clustering missing value insensitive kernel.
在线阅读 下载PDF
Reconstruction of time series with missing value using 2D representation-based denoising autoencoder 被引量:2
2
作者 TAO Huamin DENG Qiuqun XIAO Shanzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1087-1096,共10页
Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining t... Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining tasks.In this study,we propose a novel time series data representation-based denoising autoencoder(DAE)for the reconstruction of missing values.Two data representation methods,namely,recurrence plot(RP)and Gramian angular field(GAF),are used to transform the raw time series to a 2D matrix for establishing the temporal correlations between different time intervals and extracting the structural patterns from the time series.Then an improved DAE is proposed to reconstruct the missing values from the 2D representation of time series.A comprehensive comparison is conducted amongst the different representations on standard datasets.Results show that the 2D representations have a lower reconstruction error than the raw time series,and the RP representation provides the best outcome.This work provides useful insights into the better reconstruction of missing values in time series analysis to considerably improve the reliability of timevarying system. 展开更多
关键词 time series missing value 2D representation denoising autoencoder(DAE) RECONSTRUCTION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部