期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
一种用于说话人辨认的概率神经网络的MCE训练算法 被引量:4
1
作者 王成儒 王金甲 李静 《仪器仪表学报》 EI CAS CSCD 北大核心 2002年第z3期154-156,173,共4页
提出了一种基于最小分类错误准则的概率神经网络的训练算法。实验结果表明 ,这种分类网络及其学习算法在 30个说话人辨认应用中利用 5秒清晰语音获得 98.4%的辨认率 ,利用 15秒电话语音获得 85 .1%的辨认率。
关键词 说话人辨认 高斯混合模型 概率神经网络 最小分类错误
在线阅读 下载PDF
基于MCE/GPD的语音识别及其一种Robust应用中初始参数的选择 被引量:3
2
作者 韩纪庆 高文 +1 位作者 张磊 王承发 《高技术通讯》 EI CAS CSCD 2000年第7期41-44,共4页
首先讨论了基于MCE/GPD的语音识别研究的最新进展。在此基础上 ,提出了一种环境特征判别学习的Robust语音识别方法 ,该方法基于最小分类错误准则利用梯度下降法迭代地学习环境特征。由于梯度下降法产生的是局部最优解 ,因此 ,寻找较好... 首先讨论了基于MCE/GPD的语音识别研究的最新进展。在此基础上 ,提出了一种环境特征判别学习的Robust语音识别方法 ,该方法基于最小分类错误准则利用梯度下降法迭代地学习环境特征。由于梯度下降法产生的是局部最优解 ,因此 ,寻找较好的环境特征初始值就显得非常重要。最后 。 展开更多
关键词 语音识别 环境特征 梯度下降法 计算机应用
在线阅读 下载PDF
基于MCE训练算法的说话人辨认系统 被引量:1
3
作者 王成儒 王金甲 《计算机工程》 CAS CSCD 北大核心 2003年第13期105-106,114,共3页
提出了一种基于最小分类错误准则的概率神经网络的训练算法。实验结果表明, 该系统及其MCE学习算法在20个说话人辨认应用中利用5s清晰语音获得98.9%的辨认率,利用15s电话语音获得86.2%的辨认率。
关键词 说话人辨认 概率神经网络 最小分类错误 最小分类错误准则
在线阅读 下载PDF
基于无抽样小波变换和MCE训练的纹理分类
4
作者 殷保忠 杨学志 张武松 《计算机工程与应用》 CSCD 北大核心 2007年第32期65-68,142,共5页
提出了一种新的纹理分类的方法,该方法把基于无抽样小波变换的特征提取器和基于欧几里得距离的分类器进行了合并。把方差、偏态系数、峰态系数、三者的联合及谱直方图作为描述纹理图像不相重叠的图像窗的特征。一个使用线性转换矩阵的... 提出了一种新的纹理分类的方法,该方法把基于无抽样小波变换的特征提取器和基于欧几里得距离的分类器进行了合并。把方差、偏态系数、峰态系数、三者的联合及谱直方图作为描述纹理图像不相重叠的图像窗的特征。一个使用线性转换矩阵的特征提取器对分类导向的特征做进一步的提取。利用基于欧几里得距离的分类器,每个纹理图像不相重叠的图像窗被确定到属于它的那一类。基于最小分类错误训练方法的特征提取器和分类器设计的合并使分类错误达到了最小化。使用该方法对25类BrodTex纹理图像进行了评估,分类精确度达到90%以上。 展开更多
关键词 纹理分类 无抽样小波变换 最小分类错误
在线阅读 下载PDF
MMCE算法在FAGMM中的应用
5
作者 吴延渠 曾以成 蒋阳波 《声学技术》 CSCD 2010年第1期83-86,共4页
提高说话人模型的识别性能一直是语音识别领域的一个重要课题。因子分析高斯混合模型(FAGMM)是因子分析方法与高斯混合模型(GMM)结合而成的多维概率统计模型,能更好地表征语音特征矢量的相关性,然而模型参数过多导致不能实现很好的分类... 提高说话人模型的识别性能一直是语音识别领域的一个重要课题。因子分析高斯混合模型(FAGMM)是因子分析方法与高斯混合模型(GMM)结合而成的多维概率统计模型,能更好地表征语音特征矢量的相关性,然而模型参数过多导致不能实现很好的分类。把改进的最小分类错误(MMCE)算法应用于该模型,形成一种新的FAGMM+MMCE模型,能解决前述问题,而且克服了传统的最小分类错误(MCE)算法在系统训练时不灵活、训练速度慢的缺点。实验结果表明,在30个说话人的识别应用中,本模型的识别率随着高斯混合数的增加而提高,较传统的MCE算法,识别率平均提高了3%,训练时间也平均节省了20%,说明该方法是有效的。 展开更多
关键词 因子分析高斯混合模型(FAGMM) 改进的最小分类错误(Mmce)算法 FAGMM+Mmce模型
在线阅读 下载PDF
采用改进最小闭包球向量机的电力信息网络入侵检测方法 被引量:8
6
作者 王宇飞 赵婷 +2 位作者 李韶瑜 赵保华 李玉杰 《电网技术》 EI CSCD 北大核心 2013年第9期2675-2680,共6页
为降低电力信息网络入侵检测的检测误差和检测耗时,提出一种基于改进最小闭包球向量机(minimum enclosing ball vector machine,MEBVM)的入侵检测方法。该方法将入侵检测抽象成多分类问题,通过改进MEBVM对历史数据样本的训练学习来得到... 为降低电力信息网络入侵检测的检测误差和检测耗时,提出一种基于改进最小闭包球向量机(minimum enclosing ball vector machine,MEBVM)的入侵检测方法。该方法将入侵检测抽象成多分类问题,通过改进MEBVM对历史数据样本的训练学习来得到入侵检测模型。改进MEBVM利用最小闭包球降低检测耗时,并在训练过程中利用粒子群优化算法动态搜索MEBVM的最优训练参数以降低入侵检测模型误差。最后基于电力信息网络现场数据的实验证明,该方法与传统方法相比具有更高的检测精度和更少的检测耗时。 展开更多
关键词 电力信息网络 入侵检测 最小闭包球向量机 粒子群优化算法 多分类问题 误差分析 检测耗时
在线阅读 下载PDF
基于MultiBoost的最小分类误差算法 被引量:2
7
作者 王元珍 乐树彬 《小型微型计算机系统》 CSCD 北大核心 2005年第11期1948-1950,共3页
基于MultiBoost分类组装技术,提出了一种用增量交叉验证技术求MultiBoost最小分类误差的算法,以使之在指定分类器数量T的范围内找出具有最小分类误差的合成分类器.
关键词 分类组装算法 最小分类误差 MultiBoost Wagging BAGGING ADABOOST
在线阅读 下载PDF
先优化后分类改进的小波域图像去噪方法 被引量:4
8
作者 李柯材 张曦煌 《计算机工程与应用》 CSCD 北大核心 2011年第8期186-189,共4页
提出一种先优化后分类改进的小波域图像去噪方法。该方法是对现存NeighShrink去噪方法的改进,用stein的无偏风险估计,在小波域每一个子带确定一个最优的阈值和邻域窗口;根据邻域阈值的大小,将子带内的每个小波系数划分为"小"... 提出一种先优化后分类改进的小波域图像去噪方法。该方法是对现存NeighShrink去噪方法的改进,用stein的无偏风险估计,在小波域每一个子带确定一个最优的阈值和邻域窗口;根据邻域阈值的大小,将子带内的每个小波系数划分为"小"系数或"大"系数;对"小"系数直接置零,对"大"系数采用一种具有局部空间强相关性的零均值高斯模型,通过最小均方误差准则得到真实系数的估计。实验结果表明,该方法在峰值信噪比指标上明显优于NeighShrink方法,同时有效地保存了图像的纹理信息,视觉效果较好。 展开更多
关键词 先优化 后分类 图像去噪 最小均方误差
在线阅读 下载PDF
基于改进最小分类误差准则算法的深度学习研究——以台风卫星云图为例 被引量:3
9
作者 郑宗生 侯倩 +1 位作者 邹国良 卢奇 《计算机应用研究》 CSCD 北大核心 2019年第10期3160-3163,共4页
针对传统基于最小分类误差准则(MCE)建立的目标函数存在样本错分类时网络出现的梯度反向问题,引入最小分类误差准则,定义带修正项的FMCE目标函数。以较高精度的交叉熵作为基函数,将FMCE作为修正函数,提出改进交叉熵目标函数CE-FMCE,使... 针对传统基于最小分类误差准则(MCE)建立的目标函数存在样本错分类时网络出现的梯度反向问题,引入最小分类误差准则,定义带修正项的FMCE目标函数。以较高精度的交叉熵作为基函数,将FMCE作为修正函数,提出改进交叉熵目标函数CE-FMCE,使得网络在反向传播过程中提升标签类输出的概率。CE-FMCE不仅克服了传统MCE目标函数的梯度反向问题,还弥补了交叉熵函数对非标签集梯度不作区分处理的不足。分别在自建台风云图数据集和通用数据集MNIST上对CE-FMCE和MSE、交叉熵、MCE、M3CE进行对比实验,实验结果表明CE-FMCE优于其他目标函数。 展开更多
关键词 深度学习 卷积神经网络 交叉熵 最小分类误差准则 台风等级
在线阅读 下载PDF
一种基于最小误分率估计高斯混合模型参数的方法 被引量:2
10
作者 马继涌 高文 《计算机学报》 EI CSCD 北大核心 1999年第8期804-808,共5页
传统的基于最大似然估计高斯混合模型参数的方法是一种无导师的学习方法,该方法的主要缺点是学习算法在估计一类模式模型中的参数时只利用了该类模式中的训练样本,而未考虑其它类训练样本的分布影响,因此,这种方法的识别效果往往不... 传统的基于最大似然估计高斯混合模型参数的方法是一种无导师的学习方法,该方法的主要缺点是学习算法在估计一类模式模型中的参数时只利用了该类模式中的训练样本,而未考虑其它类训练样本的分布影响,因此,这种方法的识别效果往往不够理想.针对以上问题,作者提出利用最小误分率估计高斯混合模型参数的方法,这种方法考虑了不同类之间的样本的区分性.同时为了提高获得全局最优解的可能性,文中给出一种利用遗传规划求解最优参数的算法.这种方法用于非限定文本的话者识别.实验表明,该方法较传统的参数估计方法识别效果好. 展开更多
关键词 最小误分率 高斯混合模型 模式识别 语音识别
在线阅读 下载PDF
基于最大-最小相似度学习方法的文本提取 被引量:1
11
作者 付慧 刘峡壁 贾云得 《软件学报》 EI CSCD 北大核心 2008年第3期621-629,共9页
应用最大-最小相似度(maximum-minimum similarity,简称MMS)学习方法,对基于高斯混合模型的文本区域提取方法中的有关参数进行优化.该学习方法通过最大化正样本相似度和最小化反样本相似度获得最佳分类能力.根据这种判别学习思想,建立... 应用最大-最小相似度(maximum-minimum similarity,简称MMS)学习方法,对基于高斯混合模型的文本区域提取方法中的有关参数进行优化.该学习方法通过最大化正样本相似度和最小化反样本相似度获得最佳分类能力.根据这种判别学习思想,建立了相应的目标函数,并利用最速梯度下降法寻找目标函数最小值,以得到文本区域提取方法的最优参数集合.文本区域提取实验结果表明:在用期望最大化(expectation maximization,简称EM)算法获得参数的极大似然估计值后,使用最大-最小相似度学习方法,使文本提取综合性能明显提高,开放实验的召回率和准确率分别达到98.55%和93.56%.在实验中,最大-最小相似度学习方法的表现还优于常用的判别学习方法——最小分类错误(minimum classification error,简称MCE)学习方法. 展开更多
关键词 文本提取 高斯混合模型 判别学习 最大-最小相似度学习 最小分类错误学习
在线阅读 下载PDF
用纠错编码改进的M-ary支持向量机多类分类算法 被引量:1
12
作者 包健 刘然 《计算机应用》 CSCD 北大核心 2012年第3期661-664,共4页
针对M-ary支持向量机(SVM)多类分类算法结构简单,但泛化能力较弱的特点,提出了与纠错编码理论相结合的改进的M-ary SVM算法。首先,将原始类别信息编码作为信息码;然后结合纠错编码理论及期望的纠错能力,产生一定程度上性能最佳的编码,... 针对M-ary支持向量机(SVM)多类分类算法结构简单,但泛化能力较弱的特点,提出了与纠错编码理论相结合的改进的M-ary SVM算法。首先,将原始类别信息编码作为信息码;然后结合纠错编码理论及期望的纠错能力,产生一定程度上性能最佳的编码,作为分类器训练的依据;最后,对于识别阶段输出编码中的错误分类利用检错纠错原理进行校正。实验结果表明,改进的算法通过引入尽可能少的冗余子分类器增强了标准M-ary SVM多类分类算法的性能。 展开更多
关键词 M-ARY 支持向量机 纠错编码 多类分类 最小码间距离 输出校正码
在线阅读 下载PDF
子词驻留特征在电话语音确认中的应用
13
作者 孙成立 刘刚 郭军 《计算机工程》 CAS CSCD 北大核心 2009年第1期27-29,共3页
语速和插入删除错误是导致自动电话转接系统发生错误的重要原因。该文给出一种基于子词似然比(LLR)和子词驻留特征融合的语音确认方法减少上述错误。提出基于最小分类错误准则方法求取子词特征融合参数。电话转接系统实验结果表明,采用... 语速和插入删除错误是导致自动电话转接系统发生错误的重要原因。该文给出一种基于子词似然比(LLR)和子词驻留特征融合的语音确认方法减少上述错误。提出基于最小分类错误准则方法求取子词特征融合参数。电话转接系统实验结果表明,采用子词驻留特征能有效提高语音确认效果,与LLR方法相比,名称关键词的等错误率下降3.35%,数字串关键词的等错误率下降4.05%。 展开更多
关键词 语音确认 似然比 子词驻留概率 最小分类错误
在线阅读 下载PDF
基于最小分类误差准则的呼吸音分类技术
14
作者 李琳 徐文皓 +3 位作者 洪青阳 童峰 吴谨准 颜卫源 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第6期901-905,共5页
从大量呼吸音样本中归纳综合出肺部病理特征的科学表示,实现自动化、定量化的呼吸音分类,是现代医疗信息化技术的重要研究内容之一.提出了一种基于最小分类误差(minimum classification error,MCE)准则的呼吸音分类方法,建立呼吸音类别... 从大量呼吸音样本中归纳综合出肺部病理特征的科学表示,实现自动化、定量化的呼吸音分类,是现代医疗信息化技术的重要研究内容之一.提出了一种基于最小分类误差(minimum classification error,MCE)准则的呼吸音分类方法,建立呼吸音类别的分类误差损失函数,采用广义概率下降法(generalized probabilistic decent,GPD)估计得到呼吸音的隐马尔科夫模型(hidden Markov model,HMM)参数,以增强不同类型呼吸音模型的区分能力.实验结果表明,与传统的最大似然(maximum likelihood,ML)法相比,基于MCE准则求解的HMM模型,具有更好的分类效果,提高了识别准确率,客观证明了基于MCE准则的呼吸音分类技术的有效性. 展开更多
关键词 呼吸音分类 隐马尔可夫模型 最小分类误差 最大似然
在线阅读 下载PDF
基于最小分类错误训练的神经网络分类器设计
15
作者 张江安 杨洪柏 +1 位作者 林良明 颜国正 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第7期957-961,共5页
提出了一种基于最小分类错误 (MCE)训练的采用多层感知器 (MLP)结构的模式分类器设计方法 .这是一种以分类错误率最小化为目标的模式分类器设计方法 ,将它用于 MLP分类器设计能够进一步提高分类器的性能 .采用 MLP实现 MCE训练中的分类... 提出了一种基于最小分类错误 (MCE)训练的采用多层感知器 (MLP)结构的模式分类器设计方法 .这是一种以分类错误率最小化为目标的模式分类器设计方法 ,将它用于 MLP分类器设计能够进一步提高分类器的性能 .采用 MLP实现 MCE训练中的分类损失计算 ,从而将 MCE训练过程与 MLP分类器设计统一在一个神经网络结构中 ,通过 BP算法予以实现 .这不仅能达到提高MLP分类器性能的目的 。 展开更多
关键词 神经网络 设计 多层感知器 模式分类器 最小分类错误训练 模式识别 BP算法
在线阅读 下载PDF
基于隐Markov树故障诊断的确定退火设计
16
作者 桂林 武小悦 《系统工程与电子技术》 EI CSCD 北大核心 2008年第7期1359-1365,共7页
隐Markov树(HMT)模型故障诊断作为一种模式识别问题,其目标是得到最小分类误差。由于误分类率函数为分段线性常数,存在许多局部极小值,因此难以直接最小化。提出使用确定退火(DA)方法来最小化误分类率函数,通过在设计过程中随机化分类决... 隐Markov树(HMT)模型故障诊断作为一种模式识别问题,其目标是得到最小分类误差。由于误分类率函数为分段线性常数,存在许多局部极小值,因此难以直接最小化。提出使用确定退火(DA)方法来最小化误分类率函数,通过在设计过程中随机化分类决策,并使用Shannon熵限制其随机程度,得到一个光滑的误分类率函数,它在熵为0时收敛到原来的误分类率函数。给出了优化过程中梯度计算的上行-下行算法和基于梯度下降的参数重估公式。提出的基于DA的优化方法用于减速器故障诊断,结果表明使用DA较ML估计可以得到更高的识别率。 展开更多
关键词 隐MARKOV树 确定退火 最小分类误差 故障诊断
在线阅读 下载PDF
一种语音识别中的环境自适应方法
17
作者 韩纪庆 《计算机工程与应用》 CSCD 北大核心 2002年第1期69-70,77,共3页
众所周知,训练和测试环境的不同严重影响了语音识别系统的性能。该文提出了一种新的测试环境自适应的方法,它能在测试进行过程中逐步地学得环境特征,而不需要事先获得测试环境的样本数据,从而改变了语音识别系统性能。
关键词 语音识别 环境自适应 最小分类错误
在线阅读 下载PDF
面向行人重识别的跨视图最小分类误差二次判别分析方法
18
作者 江雨燕 董映宇 +2 位作者 郑炜晨 邵金 吕魏 《小型微型计算机系统》 CSCD 北大核心 2021年第10期2125-2130,共6页
行人重识别技术旨在匹配不同的摄像机拍摄场景中属于同一个人的所有图片.近年来,核化跨视图二次判别法已在相关任务中取得优良的效果.然而,在处理高维小样本数据时,对于协方差矩阵逆的估计通常由于数据集较小的原因容易产生较大的偏差;... 行人重识别技术旨在匹配不同的摄像机拍摄场景中属于同一个人的所有图片.近年来,核化跨视图二次判别法已在相关任务中取得优良的效果.然而,在处理高维小样本数据时,对于协方差矩阵逆的估计通常由于数据集较小的原因容易产生较大的偏差;在不同视图之间,人的外观经历复杂的非线性转换,因此导致识别精度较低.为解决此问题,本文提出一种将最小误差分类、平滑技术与核化跨视图二次判别法相结合的度量学习方法 MCE-kXQDA(minimum classification error-based kernel cross-view quadratic discriminant analysis),在非线性映射与跨视图二次判别法相结合的基础上将最小误差分类、平滑技术引入非线性维的核化空间中,实现非线性度量学习的同时有效提升协方差逆矩阵的估计精度.为验证MCE-kXQDA的有效性,我们在多个数据集上与其他相关方法进行了详细比较.实验结果表明MCE-kXQDA具有更优的识别精度和鲁棒性. 展开更多
关键词 行人重识别 度量学习 最小误差分类 跨视图二次判别法
在线阅读 下载PDF
CART分析及其在故障趋势预测中的应用 被引量:12
19
作者 刘玉茹 赵成萍 +2 位作者 臧军 宁芊 周新志 《计算机应用》 CSCD 北大核心 2017年第A02期57-59,73,共4页
针对机械设备故障监测中的非线性时间序列数据,构建分类回归树(CART),使用最小误差剪枝算法对初次生成的决策树进行剪枝。将CART模型用于滚动轴承设备故障趋势的预测,首先提取滚动轴承的时域和频域特征,然后基于经过主成分析(PCA)降维... 针对机械设备故障监测中的非线性时间序列数据,构建分类回归树(CART),使用最小误差剪枝算法对初次生成的决策树进行剪枝。将CART模型用于滚动轴承设备故障趋势的预测,首先提取滚动轴承的时域和频域特征,然后基于经过主成分析(PCA)降维后的数据进行CART的建模。最后将CART模型预测的结果与BP神经网络模型以及自回归滑动平均模型(ARMA)进行对比,实验结果表明:CART模型预测的平均绝对误差(MAE)和均方根误差(RMSE)值均低于ARMA和BP神经网络模型。其中CART模型预测的RMSE值比ARMA预测模型以及BP神经网络训练5 000次、10 000次的预测模型分别降低了57.26%、69.45%、57.37%。 展开更多
关键词 非线性时间序列 分类回归树 故障趋势预测 最小误差剪枝 BP神经网络 自回归滑动平均
在线阅读 下载PDF
基于k-最小表示误差类的表示分类方法
20
作者 罗智玉 郑成勇 《计算机应用研究》 CSCD 北大核心 2021年第10期3035-3039,共5页
基于表示的分类(representation-based classification,RC)通常使用所有类的训练样本来表示测试样本。然而,是否需要使用全部类来表示测试样本仍有待研究。为此,提出一种两阶段表示分类框架。首先使用RC算法计算测试样本相对于全部类的... 基于表示的分类(representation-based classification,RC)通常使用所有类的训练样本来表示测试样本。然而,是否需要使用全部类来表示测试样本仍有待研究。为此,提出一种两阶段表示分类框架。首先使用RC算法计算测试样本相对于全部类的训练样本的表示系数,找出前k(k≥1)个具有最小表示误差的类;然后利用该k个类的训练样本,再次应用RC算法对测试样本进行表示,并通过从这k个类中找出最小表示误差类来确定测试样本的类别。此外,提出了一种非负加权协同表示分类算法。所提分类框架中的前后两个RC算法可以相同也可以不同。取前后两个RC相同,对五种RC,在五个数据库上进行实验,实验结果表明,所提两阶段表示分类框架大多数情况下能显著提升原RC算法的分类精度。 展开更多
关键词 基于表示的分类 k-最小表示误差类 两阶段 非负加权 协同表示
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部