期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于MBIC的决策树聚类算法在连续语音识别中的应用 被引量:1
1
作者 陈国平 杜利民 +1 位作者 付跃文 王劲林 《计算机应用》 CSCD 北大核心 2005年第12期2792-2795,共4页
提出了一种采用最小贝叶斯信息准则(MinimumBayesianInformationCriterion,MBIC)来最优化控制决策树结点分裂程度的算法。首先在理论上证明了MBIC能够较好地解决模型参数复杂度与训练数据集规模之间的权衡问题,然后给出了基于MBIC的决... 提出了一种采用最小贝叶斯信息准则(MinimumBayesianInformationCriterion,MBIC)来最优化控制决策树结点分裂程度的算法。首先在理论上证明了MBIC能够较好地解决模型参数复杂度与训练数据集规模之间的权衡问题,然后给出了基于MBIC的决策树分裂停止准则的计算公式。汉语连续语音全音节识别实验表明:与传统的最大似然准则(MaximumLikeihoodCriterion,MLC)相比,MBIC对声学模型参数和训练数据集的变化具有更好的适应能力。 展开更多
关键词 连续语音识别 决策树聚类 最小贝叶斯信息准则 分裂停止准则
在线阅读 下载PDF
采用信息理论准则的信号源数估计方法及性能对比 被引量:8
2
作者 成玮 张周锁 何正嘉 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第8期38-44,共7页
为了从机械系统观测混合信号中有效评估信号源的数目,以及解决数据点较大时贝叶斯信息准则(BIC)难以计算的问题,在剖析了3种信源数目估计准则(赤池信息准则(AIC)、最小描述长度(MDL)以及贝叶斯信息准则(BIC))的原理和算法的基础上,提出... 为了从机械系统观测混合信号中有效评估信号源的数目,以及解决数据点较大时贝叶斯信息准则(BIC)难以计算的问题,在剖析了3种信源数目估计准则(赤池信息准则(AIC)、最小描述长度(MDL)以及贝叶斯信息准则(BIC))的原理和算法的基础上,提出了基于对数函数修正的改进贝叶斯准则(IBIC)。该准则利用对数运算将BIC目标函数中的多参数指数运算转换为乘积运算,在不降低计算精度的条件下,显著改善了BIC准则的计算效率和工程应用性能。仿真实验分析表明:AIC与MDL具有近似的源数估计性能,对非线性调制成分非常敏感;从能量角度分析,提出的新准则容忍非线性调制成分(非线性调制信号能量占观测信号总能量)能量比为5.15%,较AIC(0.07%)与MDL(0.08%)具有更好的鲁棒性能。壳体结构试验台声源数目估计实验表明,3种方法均可有效评估声源数目。本研究对于模态阶数选择、系统复杂度分析以及基于机械系统信号源分离的状态监测与故障诊断具有学术意义和工程应用价值。 展开更多
关键词 源数估计 信息理论准则 赤池信息准则 最小描述长度 贝叶斯信息准则
在线阅读 下载PDF
类相关性影响可变选择性贝叶斯分类器 被引量:8
3
作者 程玉虎 仝瑶瑶 王雪松 《电子学报》 EI CAS CSCD 北大核心 2011年第7期1628-1633,共6页
在最大相关最小冗余(mRMR)属性选择方法的基础上,通过设置一个调节因子来改变类别相关性在属性选择中的影响程度,解决mRMR方法易于引入冗余属性的问题,提出一种类相关性影响可变选择性贝叶斯分类器(CCRI SBC).为克服人为指定属性个数易... 在最大相关最小冗余(mRMR)属性选择方法的基础上,通过设置一个调节因子来改变类别相关性在属性选择中的影响程度,解决mRMR方法易于引入冗余属性的问题,提出一种类相关性影响可变选择性贝叶斯分类器(CCRI SBC).为克服人为指定属性个数易于导致的分类结果随意性,采用贝叶斯信息准则来自动确定最优属性个数.为使CCRI SBC能够处理含有连续变量的数据集,提出等频类别依赖最大化离散化方法,具有分类准确率高和离散化时间短的优点.UCI数据集的实验结果表明,本文方法能够有效处理离散和连续高维数据的分类问题. 展开更多
关键词 选择性贝叶斯分类器 属性选择 最大相关最小冗余 贝叶斯信息准则 离散化
在线阅读 下载PDF
盲信号分离中信号源数目估计方法研究 被引量:6
4
作者 徐小红 高隽 范之国 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期1-4,共4页
研究盲信号分离中信号源数目未知情况下信号源数目的估计问题。证明了无观测噪声时,利用观察信号数据矩阵的零空间估计法确定信号源数目的方法,等价于通过计算观察信号数据矩阵的秩来确定信号源数目;阐述了在信号源盲分离中有观测噪声时... 研究盲信号分离中信号源数目未知情况下信号源数目的估计问题。证明了无观测噪声时,利用观察信号数据矩阵的零空间估计法确定信号源数目的方法,等价于通过计算观察信号数据矩阵的秩来确定信号源数目;阐述了在信号源盲分离中有观测噪声时,国内外信号源数目估计的主要方法:特征值分解、Akaike信息准则(AIC)、最小描述长度(MDL)及Minka Bayesian准则,通过理论分析与实验结果对这些方法进行比较,得出各方法的适用范围以及影响估计的主要参数,为信号源数目的正确获取提供参考。 展开更多
关键词 盲信号分离 信号源数目 特征值分解 AIC准则 MDL准则 Minka bayesian准则
在线阅读 下载PDF
基于高斯混合模型的轨迹模仿学习表征参数优化 被引量:3
5
作者 于建均 郑逸加 +1 位作者 阮晓钢 赵少琼 《北京工业大学学报》 CAS CSCD 北大核心 2017年第5期719-728,共10页
针对高斯混合模型(Gaussian mixture model,GMM)参数选取效率较低的问题,提出了一种在基于GMM的轨迹模仿学习表征中综合求解GMM参数估计的方法.该方法基于多中心聚类算法中的最大最小距离算法改进kmeans算法,得到最优初始聚类中心,并基... 针对高斯混合模型(Gaussian mixture model,GMM)参数选取效率较低的问题,提出了一种在基于GMM的轨迹模仿学习表征中综合求解GMM参数估计的方法.该方法基于多中心聚类算法中的最大最小距离算法改进kmeans算法,得到最优初始聚类中心,并基于贝叶斯信息准则(Bayesian information criterion,BIC)通过遗传算法优化求解,同时获取GMM的4个重要参数.该方法通过提高划分初始数据集的效率,在优化初始聚类中心基础上确定混合模型个数,有效地避免了因为初值敏感而导致的局部极值问题.通过多组仿真实验验证了该方法的有效性. 展开更多
关键词 高斯混合模型(GMM) 遗传算法 模仿学习 贝叶斯信息准则(BIC) 最大最小距离算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部