期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
N/O co-doped microporous carbon as a high-performance electrode for supercapacitors
1
作者 YAN Jing-jing FANG Xiao-hao +3 位作者 YAO De-zhou ZHU Cheng-wei SHI Jian-jun QIAN Shan-shan 《新型炭材料(中英文)》 北大核心 2025年第1期231-242,共12页
Carbon materials with adjustable porosity,controllable het-eroatom doping and low-cost have been received considerable attention as supercapacitor electrodes.However,using carbon materials with abundant micropores,a h... Carbon materials with adjustable porosity,controllable het-eroatom doping and low-cost have been received considerable attention as supercapacitor electrodes.However,using carbon materials with abundant micropores,a high surface area and a high-dopant content for an aqueous su-percapacitor with a high energy output still remains a challenge.We report the easy synthesis of interconnected carbon spheres by a polymerization re-action between p-benzaldehyde and 2,6-diaminopyridine.The synthesis in-volves adjusting the mass ratio of the copolymer and KOH activator to achieve increased charge storage ability and high energy output,which are attributed to the high ion-accessible area provided by the large number of micropores,high N/O contents and rapid ion diffusion channels in the porous structure.At a PMEC∶KOH mass ratio of 1∶1,the high electrolyte ion-adsorption area(2599.76 m^(2) g^(−1))and the N/O dopant atoms of the conductive framework of a typical carbon electrode produce a superior specific capacity(303.2 F g^(−1)@0.5 A g^(−1))giving an assembled symmetric capacitor a high energy delivery of 11.3 Wh kg^(−1)@250 W kg^(−1).This study presents a simple strategy for synthesizing microporous carbon and highlights its potential use in KOH-based supercapacitors. 展开更多
关键词 N/O codoping Carbon electrode Microporous structure High energy density SUPERCAPACITOR
在线阅读 下载PDF
Effect of the microporous structure of ammonium perchlorate on thermal behaviour and combustion characteristics
2
作者 Hai-jun Zhang Jian-xin Nie +4 位作者 Gang-ling Jiao Xing Xu Xue-yong Guo Shi Yan Qing-jie Jiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第7期1156-1166,共11页
Ammonium perchlorate(AP)is the component with the highest content in composite propellants,and it plays a crucial role in propellant performance.In view of the effects of low-temperature AP thermal decomposition on th... Ammonium perchlorate(AP)is the component with the highest content in composite propellants,and it plays a crucial role in propellant performance.In view of the effects of low-temperature AP thermal decomposition on thermal safety and combustion characteristics,porous ammonium perchlorate(PAP)samples with different mass losses were first prepared by thermal convection heating,and the structures were characterized and analysed.Second,the effects of decomposition degree on the thermal decomposition characteristics of PAP were studied by DSC-TG.Finally,the combustion characteristics of AP/Al binary mixtures were tested with high-speed photography and in a sealed bomb.The results showed that low-temperature decomposition of AP resulted in formation of porous structures for AP particles.The pores first appeared near the surfaces of the particles and began from multiple points at the same time.The pores increased in size to approximately 5 mm and then expanded,and finally,the AP particles were full of pores.After partial decomposition,the crystal structure of AP remained unchanged,but the low and high decomposition temperatures decreased obviously.The decomposition rate accelerated.Due to the porous structure of PAP,the combustion rate of the AP/Al system increased obviously with increasing decomposition of AP.The relationship between the combustion rate and the mass loss was approximately linear under open conditions,and it was exponential for a high-pressure environment.A computational model of the combustion process for the AP/Al binary system was established to explain the effects of pore structure and pressure on the combustion process. 展开更多
关键词 Microporous structure Ammonium perchlorate Thermal behavior POROSITY Combustion characteristics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部