现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量...现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量,基于最大似然估计法构建其联合概率分布高斯混合模型(Gaussian mixture model,GMM),从而针对未知实测异响信号可利用该GMM模型进行似然判别。指出了说话人识别技术与敲击异响识别的不同之处即Mel三角滤波器个数和离散余弦变换输出系数个数的选取方式,并对方法的可行性进行分析,最后试验加以验证。结果显示此方法的识别率达100%,拒绝率达100%以上,为汽车异响的客观评价方法打下基础。展开更多
针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效...针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效地改善了鲁棒主成分分析对歌声分离不完全和梅尔频率倒谱系数反复结构歌声在低频处分离不佳的问题。首先使用鲁棒主成分分析将混合音乐信号分解为低秩矩阵和稀疏矩阵,然后分别对其提取梅尔频率倒谱系数特征参数并且对其进行相似运算,构建相似矩阵及建立梅尔频率倒谱系数反复结构模型并通过反复结构模型分别得到低秩矩阵和稀疏矩阵相关的掩蔽矩阵,最后根据构建的掩蔽矩阵模型以及傅里叶逆变换得到背景音乐和歌声。在公开数据集上进行了实验,实验结果表明本文算法在歌声分离性能上与比较算法相比,平均信号干扰比值最高有接近7 dB的提高。展开更多
文摘针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效地改善了鲁棒主成分分析对歌声分离不完全和梅尔频率倒谱系数反复结构歌声在低频处分离不佳的问题。首先使用鲁棒主成分分析将混合音乐信号分解为低秩矩阵和稀疏矩阵,然后分别对其提取梅尔频率倒谱系数特征参数并且对其进行相似运算,构建相似矩阵及建立梅尔频率倒谱系数反复结构模型并通过反复结构模型分别得到低秩矩阵和稀疏矩阵相关的掩蔽矩阵,最后根据构建的掩蔽矩阵模型以及傅里叶逆变换得到背景音乐和歌声。在公开数据集上进行了实验,实验结果表明本文算法在歌声分离性能上与比较算法相比,平均信号干扰比值最高有接近7 dB的提高。